
WORLD JOURNAL OF APPLIED SCIENCES AND RESEARCH

(RNI No. UPENGO-3668) (ISSN 2249 – 4197)

(Available online at the IJMT website <http://www.iamt.net.in>)

The world journal of applied Science and Research is a journal covered all aspects of Science and allied field of research. It publishes original research papers and articles that illuminate advance research in various field of research activity on biannual basis.

All correspondence regarding submission of manuscripts, reprints, subscription etc, should be addressed to the Editor-in-Chief, World Journal of Applied Sciences and Research, 21, Suruchi Puram, Shastri Puram Road, Agra – 282 007, E-mail: wjasr@rediffmail.com.

For subscription/missing issue queries may be sent to dr_dineshsharma@hotmail.com. The guidelines for contributors to the Journal are published in each issue and also available at IJMT website. The authors can submit their original manuscripts, articles online.

PATRONS:

Prof. C.V. Chauturvedi,

Allahabad

Dr. N.B. Khan,

Bislapur, Pilibhit

Dr. C.S. Khanna

Gaziabad

Dr. B.N. Shukla,

Kanpur

Prof. P.N. Saxena

Agra

Dr. A.K. Goyal

Bareilly

GOVERNING BODY:

Chairmen:

Dr. Dinesh C. Sharma

Pihani, Hardoi

Chief Executive Officer:

Dr. T.V.S. Yadav

Ambedkarnagar

Treasurer:

Dr. Zeenat Zaidi

Noida

EDITORIAL BOARD:

Editor-in-chief:

Dr. RAJEEV SHARMA

Agra

Executive Managing Editor:

Dr. ARSHAD ALI,

Aligarh

Managing Editor:

Dr. VIJAY KUMAR SINGH,

Dr. VISHWAKANT, Agra

Advisory Board:

Prof. G.C. Pandey, Faizabad, India

Dr. Sudheer K. Chauhan, Hardoi, India

Dr. A. K. Saxena, Rampur, India

Dr. K.S. Rana, Agra, India

Dr. Maqsood Ahamad, Badalpur, India

Dr. Pankaj Mishra, Almora, India

Dr. Ajay Kapoor, Agra, India

Dr. Zubair Ahmad, Kingdom of Saudi Arabia

Dr. Mohd. Khalid, Brazil

Dr. Farah Ahmad, Kingdom of Saudi Arabia

Mr. R.K. Sharma, Agra, India

Associated Editor:

Dr. Poonam Agarwal, Fatehpur, India

Dr. F.R. Khan, Kingdom of Saudi Arabia

Dr. R.P. Yadav, Bisalpur, India

Dr. Kishor Kumar, Badalpur, India

Dr. Sarita Rani Goel, Noida, India

Dr. R.K. Daksh, Agra, India

Dr. Neetu Singh, Fatehpur, India

Dr. Mahesh Chandra, Agra, India

Dr. Sarita Gupta, Fatehpur, India

Dr. Tufail Ahmad, Sate of Eritrea

Mrs. Arti Mishra, Etah, India

Subscription rate and terms:

The total number of issues of the journal will be two per year (Excluding Supplements)

- Rs. 500.00 per copy (India), Rate includes postal charges under certificate of posting by surface mail. Airmail charges would be extra, at rates applicable from time to time.
- For different types of membership please login to <http://www.iamt.net.in>

Note: The Editor or the Publisher assumes no responsibility for statements and opinion of contributors and authors.

Contents

S. No.	FULL LENGTH RESEARCH PAPERS	Page No.
1.	Assessment of microbial assortment in agricultural soil of district Aligarh, Uttar Pradesh, India, <i>Farah Ahmad and Iqbal Ahmad</i> .	1-8
2.	Evaluation of the genotoxic potential of Lambda-cyhalothrin in cultured lymphocytes of <i>Rattus norvegicus</i> (Berkenhout), <i>Dinesh C. Sharma and Prabhu N. Saxena</i> .	9-14
3.	Morphometrical variation and suspected gregariousness in <i>Oedaleus abruptus</i> Thunberg (Orthoptera: Acrididae) under laboratory conditions, <i>F.R. Khan and Arshad Ali</i> .	15-22
4.	Biosystematics of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) from Asir Region of Saudi Arabia, <i>Zubair Ahmad and Reda F.A. Bakr</i> .	23-26
5.	Management of African bollworm <i>Helicoverpa armigera</i> (Lepidoptera: Noctuidae) in Chickpea crop at State of Eritrea, <i>Tufail Ahmad, M. Abid Hussain, Eden Emha, Tsehainesh Gebrehiwet, Winta Gebremeskel and Wegahta Tesfahans</i> .	27-29
6.	Assessment of age specific life parameters of whitefly, <i>Bemisia tabaci</i> Genn. (Homoptera: Aleyrodidae) on some preferred host plants, <i>Syed Kamran Ahmad and Parvez Qamar Rizvi</i> .	30-34
7.	Preliminary checklist of grasshoppers and locust fauna (Orthoptera: Acrididae) of Bihar, India, <i>Nayeem M.R., M.K. Usmani and M.H. Akhtar</i> .	35-38
8.	Studies on population dynamics of aphids and their predators on sugarcane at district Shahjahanpur, U.P. India, <i>Iram Khan and Jamil Ahmad</i> .	39-42
9.	Life attributes and morphometrics of cabbage aphid, <i>Brevicoryne brassicae</i> Linnaeus (Hemiptera: Aphididae) on cabbage under controlled conditions, <i>Parvez Qamar Rizvi, Shabistana Nisar and Syed Kamran Ahmad</i> .	43-46
10.	Parasitoids of <i>Artona chorista</i> Jordan (Lepidoptera: Zygaenidae) from Sikkim: A New Record, <i>Sujata Yadav and Anand Kumar Yadav</i> .	47-51
11.	Importance of medicinal plants of Panki Thermal Power Station, Kanpur, Uttar Pradesh: a case study, <i>Poonam Agarwal</i> .	52-56
12.	Efficacy of chilli mottle virus disease on root constraints of <i>Capsicum annuum</i> L. at Agra, India, <i>Harsh Deep Yadav, Poonam Yadav, Lokendra Yadav and Prabhat Kumar Yadav</i> .	57-59
13.	Impact assessment of metacercarians on the air breathing fishes of northern Bihar, India, <i>Arastu Upadhyay and M.M.R Nomani</i> .	60-62
SHORT COMMUNICATIONS		
14.	Haematological observations of fresh water fish <i>Catla catla</i> (Ham.) against toxic tannery chemicals, <i>Rakesh Kumar Daksh, Suman Prakash and Ajay Kapoor</i> .	63-64
15.	Management and conservation of Blackbuck, <i>Antilope cervicapra</i> population at Sikandra in district AGRA, U.P., India, <i>Geeta Saluja and Ajay Kapoor</i> .	65-66

**STANDARD ABBREVIATIONS USED
IN
WORLD JOURNAL OF APPLIED SCIENCES AND RESEARCH**

Ampere	A	Millilitre	ml
Angstrom	A°	Millimetre	mm
Anti meridiem (before noon)	am	Minute (s)	min
Centimetre	cm	Molar (mole/ litre)	M*
Counts per minute	cpm	Mole (quantity of substance)	mol
Crie	Ci	Nanometre	nm
Degree	°	Oral	po
Degree of freedom	df	Ortho	o
Death	d _x	Para	p
Gram	gm	Post meridiem (after noon)	pm
Gravity	g	Quintal	q
Hour(s)	h or hr	Rad	R
Interperitoneal	ip	Second (s)	sec
Intravenous	iv	Significance	p
Kilogram	kg	Square centimetre	cm ²
Lethal concentration-50	LC ₅₀	Subcutaneous	sc
Lethal dose-50	LD ₅₀	Survival	I _x
Life expectancy	e _x	Tonne	t
Litre	l	Volume	vol
Meter	m	Volume ratio	vol/vol
mg/100ml	mg/dl	Watt	W
Micro litre	ml	Week (s)	wk
Micrometer	μm	Weight	wt
Micro molar (mole/litre)	μM	Weight per volume	wt/ vol
Milli Ampere	mA	Weight ratio	wt/ wt
Milli molar	μM	Year (s)	yr
Milligram	mg		

Contents available at www.iamt.net.in

World Journal of Applied Sciences and Research
(ISSN 2249-4197)

2013, Volume 3, Issue 1, Pages 01-08

Assessment of microbial assortment in agricultural soil of district Aligarh, Uttar Pradesh, India

FARAH AHMAD¹ and IQBAL AHMAD²

¹Department of Medical Education, King Saud University, Riyadh, Kingdom of Saudi Arabia

²Department of Microbiology, F/o Agricultural Sciences, Aligarh Muslim University, Aligarh, India

Correspondence: farahahmad13@gmail.com

Article Information	Abstract
<p>Article history:</p> <p>Received: 23.11.2012 Revised: 21.12.2012 Accepted: 01.01.2013</p>	<p>Enumeration of aerobic heterotrophic bacteria, actinomycetes and fungi were determined both in rhizospheric and non-rhizospheric soil samples of Aligarh by plate viable count. In general, rhizospheric soil showed relatively higher population density (CFU g⁻¹ of soil) for all three major groups of aerobic heterotrophs as compared to non-rhizospheric soils. The viable count of aerobic heterotrophic bacteria in the rhizospheric soils of various crops ranged from 1.25 x 10⁶ to 1.27 x 10⁸, while in the non-rhizospheric soils it differed from 1.35 x 10⁵ to 1.03 x 10⁷ CFU g⁻¹ soil. The viable count of bacteria differed with respect to plant species and site of sampling. Soil samples from leguminous crops showed relatively higher bacterial density as compared to non-leguminous crops within the same sampling sites. The rhizospheric effect (R/S ratio) in legume crops was considerably higher (5.7 x 10⁴ to 1.58 x 10⁵ CFU g⁻¹ soil) in comparison to non-legume crops (1.2 x 10³ to 2.7 x 10⁴ CFU g⁻¹) at most of the sampling sites. A significant difference in the rhizosphere and non-rhizosphere fungal plate counts was recorded and R/S ratio ranged between 8.12 and 9.51. An estimate of morphological diversity of each group was done by random selection of 75-100 colonies from each sample. Aerobic heterotrophic bacteria were grouped into three types (i) Gram -ve short rods, (ii) Gram +ve rods and (iii) Gram +ve cocci. Similarly, actinomycetes were examined microscopically and distinguished as the member of <i>Streptomyces</i>, <i>Nocardia</i>, <i>Micromonospora</i> etc. In addition, predominant fungi identified as <i>Aspergillus</i>, <i>Penicillium</i>, <i>Mucor</i>, <i>Rhizopus</i>, <i>Geotrichum</i> and <i>Fusarium</i>. However, other fungi less frequently encountered in soil are <i>Alternaria</i>, <i>Cladosporium</i>, <i>Microsporum</i>, <i>Trichoderma</i>, yeast, <i>Mycelia sterilia</i> and many other unidentified fungi.</p>
<p>Keywords:</p> <p>Soil Microbial Diversity, CFU, rhizosphere, R/S ratio</p>	

1. INTRODUCTION:

Soil microbial populations are immersed in a framework of interaction known to affect plant fitness and soil quality. The functions of soil microorganisms are central to decomposition process and nutrient cycling. Though the space occupied by living organisms is less than 5 percent of total space. Therefore, major microbial activity is confined to the 'hot-spot' i.e., agreeable with accumulated organic matter, rhizosphere (Bowen and Roviara, 1999; Tilak et al., 2005). The soil microorganisms and their preparations (biofertilizer, biopesticides and biocontrol agents) and microbe-plant interaction have been known for their significance in maintenance and supply of plant nutrients as well as protecting plant health (Vessey, 2003). Diversity and community structure in the rhizosphere is however influenced by both, plant and soil type (Cavigelli and

Robertston, 2000; Bakker et al., 2002). Plants play an important role in selecting and enriching the types of bacteria by the constituents of their root exudates. The interaction between bacteria may be beneficial, harmful and neutral for the plant and some time effect of a particular bacterium may vary as a consequence of soil conditions (Lynch, 1990).

Rhizospheric microorganisms mediate soil processes such as nitrogen fixation, synthesis of plant hormones, phosphate mineralization, decomposition, nutrient mobilization and mineralization. Among these processes, biological nitrogen fixation (BNF) offers an economically attractive alternative and ecologically sound means of reducing external inputs and improving internal resources. Biological nitrogen fixation is estimated to contribute 180 x 10⁶ metric tons/year globally (Postgate, 1998), of which 80% comes from symbiotic associative systems (Graham and Vance, 2003). Among the BNF groups, the

symbiotic forms of rhizobia (eg. *Rhizobium*, *Bradyrhizobium* etc) is important both ecologically and agronomically, since it is a major source of nitrogen for legume crops.

Challenging possibilities are offered by combination of a gradual reduction of the use of pesticides and fertilizers on one hand and a greater use of the biological and genetic potential of plant and microbial species in another hand (Schippers et al., 1995). The current emphasis is therefore made on the use of renewable resources, which are free from environmental risk. In this context, the exploitation or use in the soil root interface (rhizosphere) are emphasized in agriculture represents an environment friendly alternative to further application of chemical fertilizers. The current study was therefore, planned to see the rhizospheric effect of different crops on the diversity of different microbes (Aerobic

heterotrophs, Actinomycetes, Fungi, Fluorescent *Pseudomonas* and Nitrogen fixing bacteria) in Aligarh region. Organism's diversity of different microbial groups was also studied in different soil samples.

2. MATERIALS AND METHODS:

2.1. Collection of soil sample:

A composite of five replicates of both rhizospheric and non-rhizospheric (bulk soil at \approx 15 cm depth) soils were studied, which were collected from different agricultural fields in the vicinity of district Aligarh, Uttar Pradesh, India, during the winter season. Each soil sample was processed separately for microbiological and physicochemical studies (Table 1).

Table 1. Collection sites in the vicinity of district Aligarh, Uttar Pradesh, India

Sites	Name of the crop field	Location of sites/ villages
A ₁	Chickpea (<i>Cicer arietinum</i>)	University farm house (Qila road)
A ₂	Sugarcane (<i>Saccharum officinarum</i>)	University farm house (Qila road)
B ₁	Chickpea (<i>Cicer arietinum</i>)	Brijdham (Mathura road)
B ₂	Green gram (<i>Vigna radiata</i>)	Brijdham (Mathura road)
B ₃	Brinjal field (<i>Solanum melongena</i>)	Brijdham (Mathura road)
B ₄	Chickpea (<i>Cicer arietinum</i>)	Brijdham (Mathura road)
B ₅	Green gram (<i>Vigna radiata</i>)	Brijdham (Mathura road)
B ₆	Wheat (<i>Triticum aestivum</i>)	Brijdham (Mathura road)
C ₁	Indian mustard (<i>Brassica juncea</i>)	Haibatpur village
C ₂	Clover barseem (<i>Trifolium alexandrinum</i>)	Haibatpur village
D ₁	Chickpea (<i>Cicer arietinum</i>)	Javan village
D ₂	Indian mustard (<i>Brassica juncea</i>)	Javan village
D ₃	Wheat (<i>Triticum aestivum</i>)	Javan village
D ₄	Green gram (<i>Vigna radiata</i>)	Javan village
D ₅	Sugarcane (<i>Saccharum officinarum</i>)	Javan village
D ₆	Black gram (<i>Vigna mungo</i>)	Javan village
E ₁	Indian mustard (<i>Brassica juncea</i>)	Kasimpur village
E ₂	Sugarcane (<i>Saccharum officinarum</i>)	Kasimpur village
E ₃	Clover barseem (<i>Trifolium alexandrinum</i>)	Kasimpur village
F ₁	Barley (<i>Hordeum vulgare</i>)	Sudiyal village
F ₂	Chickpea (<i>Cicer arietinum</i>)	Sudiyal village
G ₁	Wheat (<i>Triticum aestivum</i>)	Sumera village
G ₂	Chickpea (<i>Cicer arietinum</i>)	Sumera village

2.2. Enumeration of rhizospheric and non-rhizospheric microbial population:

The microbiological characteristics like (i) aerobic heterotrophic bacteria (ii) Actinomycetes (iii) soil fungi (iv) fluorescent *Pseudomonas* (v) symbiotic aerobic diazotrophic bacteria (*Azotobacter*) and other putative nitrogen fixers (PNF) were determined by cultural techniques using standard plate count technique (Cappuccino and Sherman, 1992) in the soil collected from different locations.

Soil suspension was prepared in sterile normal saline solution and appropriately diluted in sterile

NSS. 0.1-1 ml of diluted suspension and spread on respective nutrient agar plates, incubated at appropriate temperature and time described in table 2.

2.3. Enumeration of *Pseudomonas*:

For isolation and detection of fluorescent *Pseudomonas*, soil sample (1 gm) suspended in King's B liquid medium for overnight and then diluted in normal saline solution and plated on King's B agar medium. The plates were incubated at 28-30°C for 72

hr. Detection of fluorescent colonies by UV exposure indicated the presence of fluorescent bacteria.

Table 2. Growth conditions required for different groups of microorganisms

Group of microorganisms	Medium	Incubation temperature	Incubation period
Aerobic heterotrophs	Nutrient agar	28±2°C	24 hr
Actinomycetes	Kenknight's agar	28±2°C	10-14 days
Fungi	Martin's agar	28±2°C	3-7 days

3. RESULTS AND DISCUSSION:

3.1. Isolation and characterization of rhizospheric microorganisms:

Qualitative assessment of specific groups of rhizobacteria, predominant actinomycetes and fungi were isolated on their respective media by repeated streaking and plating. The bacterial cells were differentiated by Gram's staining and on the basis of morphology. Actinomycetes were identified on the basis of colonial morphology and microscopic structures of mycelium and sporulation pattern. Fungi were identified on the basis of their vegetative mycelium reproductive structures, sporulation pattern and spore structures using standard methods as described by Cappuccino and Sherman (1992) and Gilman (1998). The bacterial isolates were characterized for their biochemical characteristics like hydrolysis of starch, lipid and chitin, utilization of glucose, sucrose, lactose, mannitol and citrate, production of catalase using standard methods (Cappuccino and Sherman, 1992) and specific tests as described in Bergy's manual of determinative bacteriology.

Viable plate count of aerobic heterotrophic bacteria, actinomycetes and fungi were determined both in rhizospheric and non-rhizospheric soil samples of Aligarh (Table 3). In general rhizospheric soil showed relatively higher viable count (CFU g⁻¹ of soil) for all three major groups of soil microorganisms (aerobic heterotrophic bacteria, actinomycetes and fungi) as compared to non-rhizospheric soil. The viable count of aerobic heterotrophic bacteria in the rhizospheric soils of different crops ranged from 1.25 x 10⁶ to 1.27 x 10⁸ while in the non-rhizospheric soils it varied from 1.35 x 10⁵ to 1.03 x 10⁷ CFU g⁻¹ soil. These viable counts of bacteria varied with respect to plants and sites of sample collection. Site A₁, B₁ and B₄ (*Cicer arietinum*), C₂ (*Trifolium alexandrinum*), D₃ (*Triticum aestivum*), D₆ (*Vigna mungo*), E₃ (*Trifolium alexandrinum*) and F₁ (*Hordeum vulgare*) showed relatively higher count as compared to other sampling sites. Similar trend of heterotrophic aerobic bacterial counts on nutrient agar was also observed in the non-rhizospheric soils. Soil samples from leguminous crops showed relatively higher bacterial density as compared to non-leguminous crops within

same sites of sampling. The rhizospheric effect (R/S ratio) in legume crops was relatively higher in comparison to non-legume crops at most of the sampling sites (Table 3).

Similarly, the viable count of actinomycetes in the rhizospheric soil ranged from 4.2 x 10⁴ to 1.58 x 10⁵ CFU g⁻¹ and in the non-rhizosphere soil, it varied from 1.2 x 10³ to 2.7 x 10⁴ CFU g⁻¹. Distribution patterns of actinomycetes were similar to that of aerobic heterotrophic bacteria. However, their frequency of occurrence in certain sites (A₁, A₂, B₁, B₂, C₂, D₂, D₃, E₁, F₂, G₁, and G₂) was relatively higher with other sampling sites irrespective of crop under cultivation. R/S ratio for actinomycetes ranged from 4.9 to 5.85 in different field location. The variation in R/S ratio in leguminous and non-leguminous crops of different sites is comparable as depicted in table 3.

The population density of soil fungi ranged from 1.6 x 10⁵ to 5.8 x 10⁵ CFU g⁻¹ in rhizospheric soils, whereas, in the non-rhizospheric soils it ranged from 1.4 x 10⁴ to 6.6 x 10⁴ CFU g⁻¹ (Table 3). A significant difference in the rhizosphere and non-rhizosphere fungal plate counts was recorded, whereas, R/S ratio was ranged from 8.12 to 9.51 (Table 3).

Qualitative estimation of morphological diversity of each group was done by random analysis of 75-100 colonies from each sample. Aerobic heterotrophic bacteria were grouped into three types (i) Gram -ve short rods, (ii) Gram +ve bacilli and (iii) Gram +ve cocci. Similarly actinomycetes were examined microscopically and distinguished as the member of *Streptomyces*, *Nocardia*, *Micromonospora* and other unidentified actinomycetes. On the other hand, predominant types of fungi belong to genera *Aspergillus*, *Penicillium*, *Mucor*, *Rhizopus*, *Geotrichum* and *Fusarium*. However, a variety of other fungi were less frequently encountered, included *Alternaria*, *Cladosporium*, *Microsporum*, *Trichoderma*, yeast, *Mycelia sterilia* and many other unidentified fungi.

3.2. Microbial characteristics of agricultural soil of Aligarh:

Soil microorganisms can be critically used for the maintenance of soil function in both natural and managed agricultural soils because of their

involvement in the key processes of soil structure formation; decomposition of organic matter, toxin removal, and cycling of elements/nutrients (VanElsas and Trevors, 1997). Soil microbes also play a key role in promoting plant growth and suppressing soil borne plant diseases (Doran et al., 1996). Microbial communities in root associated habitat respond with respect to density, composition, and activity to the abundance and great diversity of organic root exudates, eventually yielding plant species-specific microflora (Abawi and Thurston, 1992; Abawi and Widmer, 2000; Burdman et al., 2004; Buyer et al., 1999). Due in part to the scarcity of the convenient methods for exploration, our understanding of the different degrees and dynamics of microbial community variation is limited (Agrios, 2000; Buyer et al., 1999; Garbeva et al., 2004). The term microbial diversity describes the number of different types and their relative abundance in a given community in a particular habitat. In molecular ecological terms, it

can be defined as the number and distribution of different sequence types present in the DNA extracted from the community in the habitat. However, the term community structure implies that information is included on the numbers of individuals of different recognizable taxa (Liesack et al., 1997). These divergent terms often used interchangeably. To study microbial diversity, both cultivations based and cultivation independent methods are used. However, both approaches have their own advantages and limitations (Janssen et al., 2002; Garbeva et al., 2004). Though culture dependent techniques are limited for studies on the composition of natural microbial communities in soil when used alone, yet they help in understanding the growth characteristics, potential ecological behaviour and function of microorganisms from soil habitats (Hoitink and Boehm, 1999; Kozdroj and van Elsas, 2001).

Table 3. Microbial assortment of selected microbial groups in agricultural soil of district Aligarh

Soil samples (Name of the crop)	Sample site	Plate count CFU g ⁻¹ of soil								
		Aerobic heterotrophic bacteria			Actinomycetes			Fungi		
		Rhizo- sphere (x10 ⁵)	Non rhizo- sphere (x10 ⁴)	R/S	Rhizo- sphere (x10 ³)	Non rhizo- sphere (x10 ²)	R/S	Rhizo- sphere (x10 ⁴)	Non rhizo- sphere (x10 ³)	R/S
Chickpea	A ₁	1270±85.0	1030±406.8	12.33	158±5.00	270±22.91	5.85	43±2.65	43±17.58	9.0
Sugarcane	A ₂	178±20.95	184±26.51	9.67	105±7.21	210±18.03	5.00	40±2.00	49±16.64	8.34
Chickpea	B ₁	187±10.44	149±16.37	12.55	108±4.00	190±6.56	5.68	35±3.00	37±13.00	9.09
Greengram	B ₂	107±15.72	944±45.57	11.26	100±7.00	180±6.24	5.43	51±5.29	59±12.17	8.7
Brinjal	B ₃	127±12.38	115±13.23	9.055	68±9.64	130±10.58	5.1	53±1.00	66±7.00	8.12
Chickpea	B ₄	980±62.45	850±65.57	11.53	58±6.08	110±12.29	5.3	16±1.73	18±7.21	8.93
Greengram	B ₅	139±17.78	109±8.185	12.75	75±6.24	140±11.36	5.59	57±2.65	60±7.21	9.42
Wheat	B ₆	480±46.89	430±51.57	8.96	73±5.57	140±7.00	5.19	49±3.61	63±6.00	8.24
Indian mustard	C ₁	138±17.44	133±18.68	10.38	85±16.64	160±18.36	5.48	26±2.65	14±5.29	8.36
Clover	C ₂	780±37.00	680±53.56	11.4	114±7.21	210±13.53	5.5	32±2.00	35±5.29	9.1
Chickpea	D ₁	121±22.27	970±26.00	12.47	76±7.00	130±6.24	5.7	53±2.65	56±9.64	9.46
Indian mustard	D ₂	182±20.66	196±26.46	10.77	116±7.55	230±18.36	5.05	54±2.65	66±7.00	8.2
Wheat	D ₃	620±81.85	590±26.91	10.51	109±7.21	210±11.79	5.14	19±2.65	23±7.21	8.26
Greengram	D ₄	119±21.79	103±24.06	11.55	83±4.37	150±5.57	5.37	24±4.36	27±6.24	9.25
Sugarcane	D ₅	188±22.72	169±25.94	11.12	92±7.55	180±8.19	5.05	47±2.00	51±5.57	9.02
Black gram	D ₆	680±63.84	920±24.27	7.39	42±6.24	90±6.56	4.9	41±4.58	47±4.36	8.72
Indian mustard	E ₁	12.5±2.93	13.5±1.73	7.56	107±14.00	12±6.00	5.45	46±8.19	49±7.94	9.39
Sugarcane	E ₂	127±22.91	106±4.36	11.98	57±10.44	90±10.44	5.23	37±3.46	42±5.57	8.81
Clover	E ₃	890±36.06	730±26.00	11.22	64±4.58	120±12.29	5.39	24±4.58	28±7.94	8.57
Barley	F ₁	880±18.33	105±11.36	8.38	89±6.08	170±7.94	5.27	25±5.29	29±8.89	8.62
Chickpea	F ₂	147±14.93	114±13.23	12.89	108±7.21	190±14.00	5.65	27±4.58	29±5.19	9.31
Wheat	G ₁	116±16.00	108±10.58	10.74	113±11.79	210±7.21	5.42	26±6.24	30±10.58	8.57
Chickpea	G ₂	159±19.00	115±10.39	13.83	128±7.00	220±10.82	5.78	58±7.21	61±5.29	9.51

In the present investigation, plate viable counts of rhizospheric and non-rhizospheric soils of culturable microorganisms *i.e.*, aerobic heterotrophic

bacteria, actinomycetes and fungi were examined. As expected, a significant increase in the microbial density of rhizospheric soil was observed compared

to non rhizospheric soils which could possibly be due to the nutrient rich environment and availability of nutrients from root exudates, which includes an array of low and high molecular weight compounds (Vainio and Hantula, 2000). Our observation demonstrated 10 fold increases in the rhizospheric microbial density and is in close agreement with the reports of Weller and Thomashow (1994).

The plant and location based variations in the population density of three common groups of culturable heterotrophic aerobic microorganisms was observed, which are expected due to the several factors like age of plant, nature and types of plant root exudates, and environments like, moisture condition of field soil and field amendment (Grayston et al., 1998; Dakora and Phillips, 2002). Moreover, the variation in rhizospheric effect (R/S ratio) is also evident. The R/S ratio among leguminous crops viz., *Cicer arietinum*, *Vigna* spp. and *Trifolium alexandrium* varied from 11.5 to 13.8 (bacteria), 7.4 to 12.8 (actinomycetes) and 1.2 to 11.4, (fungi) respectively

among these groups of microorganisms. A similar variation among non-leguminous crops was also observed suggesting that the rhizosphere effects can be different for both leguminous and non-leguminous crops.

The viable plate counts of soil actinomycetes ranged from 5.7×10^4 (*Saccharum officinarum*) to 1.58×10^5 (*Cicer arietinum*) CFU g⁻¹ in the rhizosphere of different crops and 1.2×10^3 to 2.7×10^4 CFU g⁻¹ which showed their abundance both in the rhizospheric and non rhizospheric soils. The R/S ratio varied from 4.9 to 5.9 which are lower than the R/S ratio of aerobic heterotrophic bacteria (7.4 to 13.8). The low R/S ratio observed in this study could probably be due to the poor competitive nature of actinomycetes as compared to other heterotrophic bacteria and fungi. Common types of actinomycetes identified include the member of *Streptomyces*, *Nocardia* and *Micromonospora* (Alexander, 1985; Curl and Truelove, 1986; Atlas and Bartha, 1991).

Table 4. Morphological and biochemical characteristics of the test isolates

Biochemical characters	Fluorescent <i>Pseudomonas</i> 27*	<i>Bacillus</i> species 30*	<i>Azotobacter</i> species 35*	Putative N ₂ fixers 25*
Pigmentation	diffusible fluorescent green pigment	—	Transparent, milky, some become blackish brown on aging	—
Colony Morphology	Button shaped	Serrated, irregular Margins	Watery, Mucilaginous Shrink, Serrated margins	Transparent watery, colonies, entire margins
Gram reaction	Negative	Positive	Negative	Mostly Gram negative**
Cell shape	Rods	rods	Rods	Rods
Growth on N ₂ free medium	—	—	+	+
Catalase, Citrate test	100	100	100	100
Oxidase test	100	80	20	40
Hydrolysis Starch	55.56	80	68.09	40
Lipid Utilization	77.78	80	48.94	50
Glucose	55.56	10	22.2	48
Lactose	11.11	70	11.11	40
Sucrose	33.33	60	33.33	60
Mannitol	11.11	70	36.17	25

*Total number of isolates, values are in percent (%), ** One isolate is Gram +ve
Chitin and cellulose hydrolysis- Isolates of all groups were negative

A third group of microorganism, soil fungi are an important eukaryotic microorganism responsible for degradation of organic matter, nutrient cycling and number of activities including symbiotic

relationship with plant root. In this study, the quantitative estimate of free living soil fungi revealed the density as 1.6×10^5 CFU g⁻¹ to 5.8×10^5 CFU g⁻¹ in the rhizosphere soil and 1.4×10^4 to 6.6×10^4 CFU g⁻¹

in the non rhizosphere soil while, the R/S ratio ranged between 8.1 and 9.5. Plant and location based differences in the quantitative value of free living fungi are also evident like bacteria. Population density of above tropical soil microbes is in the range as found in the fertile soil (Alexander, 1985). In the rhizosphere soil member of the genera *Aspergillus*, *Penicillium*, *Rhizoctonia*, *Geotrichum* and *Fusarium* are found more frequently.

The above observations were based on only small fraction of cultivable heterotrophic microorganisms which were common representative groups in the plate culture method. Therefore other culturable and non culturable microorganisms including both free living, symbiotic (VAM fungi) and endophytic organisms needs to be investigated further using modified cultural media and direct DNA extraction PCR based molecular techniques, as adopted by many workers of the developed countries (Gomes et al., 2001; Kowalchuk et al., 1997; Smith and Read, 1997; Vainio and Hantula, 2000; Khan, 2006). Many authors are of the opinion that both cultivation based and culture independent molecular approaches (polyphasic) are most appropriate way of assessing microbial diversity in any given habitat (Hill et al., 2000; Kozdroj and Van Elas, 2001).

Major morphological groups of soil bacteria enumerated could be distinguished as Gram +ve rods (mainly *Bacillus*), Gram -ve short rods and Gram +ve cocci. The quantitative analysis of the rhizosphere indicated a relatively higher number for Gram -ve rods followed by Gram +ve rods and least Gram +ve cocci (Table 4).

Fluorescent *Pseudomonas* and asymbiotic N₂ fixers are commonly associated with rhizospheric soil with varying frequencies. Our findings are in agreement with the reports of many workers (Alexander, 1985; Paul and Clark, 1996).

The variation in the frequency of occurrence of *Bacillus*, fluorescent *Pseudomonas*, *Azotobacter* and putative nitrogen fixing bacteria in rhizospheric soil is probably due to the influence of a number of factors including environmental factors, plant and soil type and soil management. It seems that plant type is an important factor determining the structure of microbial communities in soil, as the exudates released from the root system of plants provide the specific carbon (5-21%) and energy source required for microbial growth (Marschner, 1995; Germida et al., 1998; Grayston et al., 1998; Vainio and Hantula, 2000; Kaiser et al., 2001).

However, influence of various factors on microbial density/ diversity could be more precisely studied by molecular/ PCR based methods as used by many laboratories where facility exists (VonWintzingerode et al., 1997; Janssen et al., 2002; Garbeva et al., 2004;

Chaobat et al., 1996; Antoun et al., 1998). Due to lack of facility, we could not make an attempt to assess the genetic diversity of rhizobacteria.

4. ACKNOWLEDGEMENTS:

Authors are grateful to the Chairman of Department of Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India for providing the necessary facilities to conduct this research work.

5. REFERENCES:

Abawi GS and Thurston HD. 1992. Effect of organic mulches, soil amendments, and cover crops on soil borne plant pathogens and their root diseases. Proc Int Workshop Slash/Mulch Prod Syst, Turrialba Costa Rica.

Abawi GS and Widmer TL 2000. Impact of soil health management practices on soil borne pathogens, nematodes and root diseases of vegetable crops. *Appl Soil Ecol*, 15: 37-47.

Agrios GN. 2000. *Plant pathology*. Academic press, San Diego, New York.

Alexander M. 1985. *Introduction to Soil Microbiology*. John Wiley and Sons, Inc., Chichester, Brisbane and Toronto, New York.

Antoun H, Beauchamp CJ, Goussard N, Chabot R and Lalande R. 1998. Potential of *Rhizobium* and *Bradyrhizobium* species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (*Raphanus sativus* L.). *Pl Soil*, 204: 57-67.

Atlas RM and Bartha R. 1991. *Microbial Ecology*, In: *Fundamental and Applications*. Reading Addison Wesley.

Bakker AJM, McGrath SP, Reeves RD and Smith JAC. 2000. A review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: *Phytoremediation of contaminated soil and water* (Eds: Terry N, Banuelos G and Vangronsveld J). CRC Press, Boca Raton, Florida, USA, pp: 85-107.

Bowen GD and Roviara AD. 1999. The rhizosphere and its management to improve plant growth. *Advan Agron*, 66: 1-102.

Burdman H, Widmer F, Sigler WV and Zeyer J. 2004. New molecular screening tools for the analysis of free-living diazotrophs in soil. *Appl Environ Microb*, 70: 240-247.

Buyer JS, Roberts DP and Russek-Cohen E. 1999. Microbial community structure and function in the spermosphere as affected by soil and seed type. *Can J Microb*, 45: 138-144.

Cavigelli MA and Robertson GP. 2000. The functional significance of denitrifier community

composition in a terrestrial ecosystem. *Ecology*, 81: 1402-1414.

Cappuccino JC and Sherman N. 1992. *Microbiology*. In: A laboratory manual. Benjamin/ Cummings Pub. Co., New York, pp: 125-179.

Chaobat R, Antoun H, Kloepfer JW and Chantal JB. 1996. Root colonization of maize and lettuce by bioluminescent *Rhizobium leguminosarum*. *Bivar Phaseol*, 62: 2767-2772.

Curl EA and Truelove B. 1986. *The Rhizosphere*. Springer-Verlag Berlin Heidelberg, New York, Tokyo, Germany.

Dakora FD and Philipps DA. 2002. Root exudates as mediators of mineral acquisition in low nutrient environments. *Plant Soil*, 245: 35-47.

Doran JW, Sarrantonio M and Liebig MA. 1996. Soil health and sustainability. *Adv Agron*, 56: 2-54.

Garbeva P, van Veen JA and van Elsas JD. 2004. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. *Ann Rev Phytopath*, 42: 243-7.

Germida JJ, Siciliano SD, Freitas JR and Seib AM. 1998. Diversity of root associated bacteria associated with field grown canola (*Brassica napus* L.) and wheat (*Triticum aestivum* L.). *FEMS Microbiol Ecol*, 26: 43-50.

Gilman JC. 1998. *A manual of soil fungi*, Chawla Offset Printers, New Delhi.

Gomes NCM, Heuer H, Schonfeld J, Costa R, Hagler ML and Smalla K. 2001. Bacterial diversity of the rhizosphere of maize grown in tropical soil studied by temperature gradient gel electrophoresis. *Plant Soil*, 232: 167-180.

Graham PH and Vance CP. 2003. Legumes: Importance and constraints to greater use. *Plant Physiol*, 131: 872-877.

Grayston SJ, Wang S, Campbell CD and Edwards AC. 1998. Selective influence of plant species on microbial diversity in the rhizosphere. *Soil Biol Biochem*, 30: 369-378.

Hill GT, Mitkowski NA, Aldeich-Wolfe L, Emele LR, Jurkonic DD, Ficke A, Maldonado-Ramirez S, Lynch ST and Nelson EB. 2000. Methods for assessing the composition and diversity of soil microbial communities. *Appl Soil Ecol*, 15: 25-36.

Hoitink HAJ and Boehm MJ. 1999. Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. *Ann Rev Phytopath*, 37: 427-46.

Janssen PH, Yates PS, Grinton BE, Taylor PM and Sait M. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. *Appl Environ Microb*, 68: 2391-96.

Kaiser O, Puhler A and Selbitschka W. 2001. Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (*Brassica napus* cv. Westar) employing cultivation-dependent and cultivation independent approaches. *Microb Ecol*, 42: 136-149.

Khan AG. 2006. Mycorrhizoremediation: an enhanced form of phytoremediation. *J Zhejiang Univ Sci*, 7: 503-514.

Kowalchuk GA, Gerards S and Woldendorp JW. 1997. Detection and characterization of fungal infections of *Ammophila arenaria* (Marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18S rDNA. *Appl Environ Microb*, 63: 3858-3865.

Kozdroj J and van Elsas JD. 2001. Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. *J Microb Methods*, 43:197-212.

Liesack W, Janssen PH, Rainey FA, Ward-Rainey NL and Stackebrandt E. 1997. Microbial diversity in soil: the need for a combined approach using molecular and cultivation techniques. In: *Modern Soil Microbiology* (Eds: van Elsas JD and Trevors JT). Marcel Dekker, New York, pp: 375-439.

Lynch JM. 1990. *The Rhizosphere. Ecological and Applied Microbiology*. John Wiley and Sons Ltd., West Sussex, U.K.

Marschner H. 1995. *Mineral nutrition of higher plants*. Academic Press, London.

Paul EA and Clark FE. 1996. *Soil microbiology and biochemistry*, Academic Press, San Diego, California.

Postgate J. 1998. *Nitrogen fixation*, Cambridge University Press, Cambridge, pp:112.

Schippers B, Scheffer RJ, Lugtenberg BJJ and Weisbeek PJ. 1995. Biocoating of seeds with plant growth promoting rhizobacteria to improve plant establishment. *Outlook on Agri*, 24: 179-185.

Smith SE and Read DJ. 1997. *Mycorrhizal symbiosis*. Academic press, Sand Diego.

Tilak KVBR, Ranganayki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK and Johri BN. 2005. Diversity of plant growth and soil health supporting bacteria. *Curr Sci*, 89: 136-150.

Vainio EJ and Hantula J. 2000. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. *Mycol Res*, 104: 927-936.

Van Elsas JD and Trevors JT. 1997. *Modern Soil Microbiology*. Marcel Dekker, New York, pp: 1-20.

Vessey KJ. 2003. Plant growth promoting rhizobacteria as biofertilizers. *Plant Soil*, 255: 571-586.

VonWintzingerode F, Geobel UB and Stackebrandt E. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. *FEMS Microb Rev*, 21: 213-29.

Weller DM and Thomashow LS. 1994. Current challenges in introducing beneficial microorganisms into the rhizosphere. In: *Molecular Ecology of Rhizosphere Microorganisms*. (Eds: O'Gara F, Dowling DN and Boesten B), VCH Verlagsgesells Chaft mbH, Weinheim, Germany, pp: 1-18.

Evaluation of the genotoxic potential of Lambda-cyhalothrin in cultured lymphocytes of *Rattus norvegicus* (Berkenhout)**Dinesh C. Sharma¹ and Prabhu N. Saxena²**¹**Department of Zoology, Faculty of Science, Government Degree College, Pihani, Hardoi, U.P., India**²**Department of Zoology, Faculty of Life Sciences, Dr. B.R. Ambedkar University, Agra, India****Correspondence:** dr_dineshsharma@hotmail.com

Article Information	Abstract
Article history: <i>Received: 09.09.2012</i> <i>Revised: 18.10.2012</i> <i>Accepted: 12.12.2012</i>	The rise of human population has crossed all strides in the beginning of 20 th century with the result scientists had to employ all tactics to feed the rising population. During this course some of the synthesized chemicals not only helped the mankind but at the same time became reasons for his agony. λ -cyhalothrin being a third generation pesticide contains α -cyno group and is available in a number of formulations selected for present study to evaluate its effect on genotoxicology. Genotoxic potential of λ -cyhalothrin (LCT) was evaluated <i>in vivo</i> in the cultured albino rat lymphocytes on the basis of chromosomal aberration (CA) assay. The LCT was administered to albino rats as repeated oral doses of 18 mg/kg body weight to acute group; 0.6 mg/kg body weight to sub acute group up to 30 days, while recovery group did not receive any dose after 30 days till day 45. The negative control received the vehicle (ground nut oil) only. Mitomycin C (MMC) was used as a positive control (1.5 mg/kg body weight), administered intraperitoneally. Significant clastogenic potential has been observed after 30 days sub acute treatment. The types of chromosomal aberrations observed in present study include chromosome gap, chromosome break, chromatid gap, chromatid break and fragments. LCT possesses potential to induce cytogenetic changes in lymphocytes, which are mostly used in defense and cell immunity. These changes inform of chromosomal aberrations are indicative of possibility of the experimental compound to exert stress at such a higher level of food chain. The pyrethroids may be problematic like conventional pesticides of yester years.
Keywords: λ -cyhalothrin (LCT), Chromosomal aberration, albino rat, MMC	

1. INTRODUCTION:

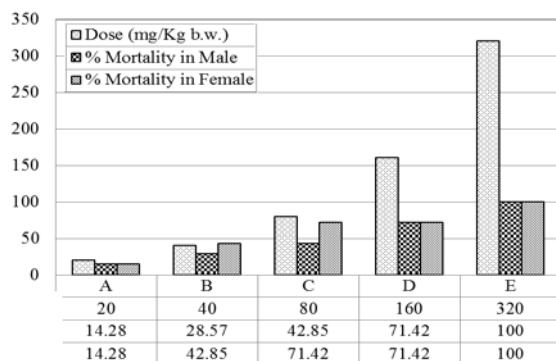
The population of the world is increasing continuously since time immemorial and utilization of natural resources is on increase. The rise of human population has crossed all strides in the beginning of 20th century with the result scientists had to employ all tactics to feed the rising population. It became essential to look for newer avenues to minimize the misery and plight of human population. In this situation few chemicals were synthesized which were identical to natural origins. The pyrethroids were such in this series. To overcome the problem of food requirement, biologically safe pyrethroids are in vogue. However, their indiscriminate use is not free of problems. Unfortunately pesticides have diverse effects on the specific target species. Undesirable side effects are wide spread and include injury to non-target organisms, ecosystem imbalance and environmental contamination by persistent pesticides. Pesticides are biological, physical and

chemical agents used to kill organisms, which are harmful to human beings. Pesticides might be incorporated into plant tissue and food grains and as a result of this they enter into food chain and accumulated at various trophic levels after each generation through biomagnification. Such pesticides are a menace, in a sense that they get entry into the mammalian body and cause alterations in various cytological, biochemical and physiological processes leading to serious complications.

The genotoxic effects of λ -cyhalothrin (LCT) were investigated in various animal species using chromosomal aberration (CA), micronucleus formation (MN) and banding pattern analysis (Agrawal et al., 1994; Campana et al., 1999; Fahmy and Abdalla, 2001; Celik et al., 2003; Sharma, 2004). The bone marrow is most widely used for short-term *in vivo* assay for genotoxic study (Schmidt, 1973; Heddle 1973), however, in the present study lymphocytes have been used as they are functional in defense mechanism and can easily be obtained from

blood of the experimental animal. Although cytotoxic nature of synthetic pyrethroids is a known fact (Pati and Bhunya, 1989; Bhunya and Pati, 1990; Hayashi et al., 1994; Dianovsky and Sivikova, 1995; Nakano et al., 1996; Chauhan et al., 1997; Pandey, 2001; Singh and Saxena, 2002; Sharma, 2004), yet LCT is hereby checked for possessing the cytotoxic potential through chromosomal aberrations analysis. Earlier reports emphasize mainly bone marrow (Celik et al., 2003) for evaluating LCT toxicity however the present studies assess genotoxic potential of LCT in lymphocyte *in vivo*.

2. MATERIALS AND METHODS:


2.1. Test Compound:

For the present study λ -cyhalothrin (LCT), a non-systemic pyrethroid insecticide with the trade name 'Karate' (CAS no. 91465-08-06), chemical name (R+S)-F-cyano-3 methyl-(phenoxyphenyl)-(1S+1R)-cis-3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropane-carboxylate of 98 % purity, with contact and stomach action and repellent properties was procured from Zeneca-ICI Agro Chemicals, Chennai, India.

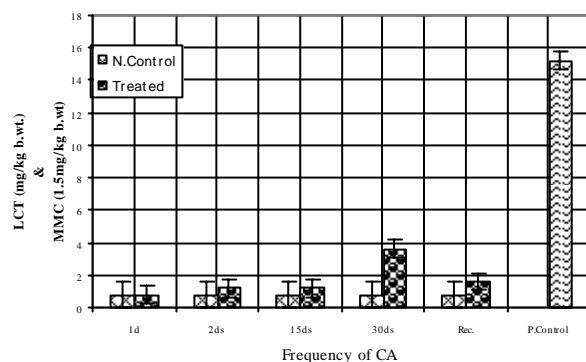
2.2. Maintenance of Experimental Albino Rats:

The experimental albino rats (*Rattus norvegicus*, Berkenhout), procured from inbred colony were acclimated for one month to the laboratory conditions (temperature. $25 \pm 0.5^\circ\text{C}$, relative humidity $60 \pm 5\%$ and photoperiod 12 hr/day) before using them for the experiment. Adult male

Fig. 1. Percent mortality of λ -cyhalothrin in male and female albino rats, *R. norvegicus* after oral dosing

2.4. Selection of Dose:

2.4.1. Test agent: An oral dose of 18 mg/kg body weight for acute treatment, while for sub acute treatment 1/30 of acute dose was given for 30 days *i.e.* 0.6 mg/kg body weight/day by gavage tube. The recovery group did not receive any dose after 30 days of sub acute treatment till day 45.


and female rats of almost equal size and weight were kept in the polypropylene cages and cleaned regularly to avoid any infection or undesirable odour in the laboratory. Each cage was equipped with a metallic food plate and water bottle. The albino rats were offered fresh feed daily throughout the experimentation on Gold Mohar rat and mice feed, manufactured by Hindustan Lever Ltd., India at regular interval and water was provided *ad libitum*.

2.3. Random Selection of Individuals:

In the present study, for LD₅₀ the data were analyzed statistically by log dose/probit regression line method (Finney, 1971). Oral LD₅₀ of male and female rats was found to be 75.85 mg/kg body weight and 56.695 mg/kg body weight, respectively (Saxena and Sharma, 2002; Sharma, 2004). The percent mortality response in the two sexes as per figure 1, did not reveal any significant change ($p > 0.05$). Hence, it could be possible to select the individuals randomly (irrespective of sex) for experimentation.

Five healthy adult albino rats (7-8 weeks of age, with average body weight of 150-200 g) were selected randomly for test, control and recovery studies sacrificed after 1, 2, 15, 30 and 45 (recovery) days for the collection of blood. Each rat was assigned a number for convenience prior to experimentation. All the rats of the experimental sets were given doses of LCT orally with the help of gavage tube and those of control sets equal amount of vehicle *i.e.* ground nut oil.

Fig. 2. Frequency of chromosomal aberration (%) in relation to λ -cyhalothrin in albino rat, *R. norvegicus* using cultured lymphocyte

2.4.2. Positive control: Mitomycin C (MMC), CAS no. 50-07-7 was used as a positive control. MMC was given as a single dose of 1.5 mg/kg bwt via intraperitoneal injection. It is acceptable that a positive control is administered by a route different from or the same as the test agent and that it is given only a single time (Hayashi et al., 1994).

2.4.3. Negative control: Negative controls consisting of vehicle (groundnut oil) were treated with all treatment groups.

2.5. Collection of Blood Samples:

In the early morning hours (7-8 am) on the due date of autopsy the rats were warmed under the desk lamp to facilitate bleeding. Enough care was taken to avoid them going into heat shock. Over heated condition was depicted by beads of perspiration on the nose or excessive activity. The rats were placed in a restraining block and swabbed the tail first with 70% ethanol, then with 90% ethanol. After the alcohol was evaporated, a small slit was made in the underside of the tail about 1 inch from the base of the tail by a flamed razor blade. First two drops of blood were discarded to avoid contamination; Blood collecting tubes were gently flamed just before and just after the blood was collected. After collection 8-10 drops of blood, the tube was agitated gently to mix the blood and heparin solution. The blood collecting tubes were tightly capped and stored at 37°C.

2.6. Chromosomal Aberration Assay:

Chromosomal aberration was performed in cultured lymphocyte according to the methodology proposed by Triman et al. (1975) with slight modifications.

2.6.1. Inoculation of culture: For culture 0.1 ml of the blood-heparin mixture was added to each prepared culture vials containing 0.1 ml phytohemagglutinin (PHA) and 0.8 ml supplemented medium (containing RPMI 1640, 25 mM Hepes buffer, fetal calf serum and penicillin-streptomycin solution), to bring the final culture volume to 1.0 ml. The cultures were mixed well and capped tightly. The cultures were incubated at an angle of approximately 5° from horizontal at 37°C for 24 hours.

2.6.2. Culture growth in media: The cultures were centrifuged after 24 hours at 200 x g for 8 min. The supernatant was removed and discarded aseptically with a sterile Pasteur pipette. The medium was replaced with 0.8 ml of supplemented medium and 0.1 ml of PHA. The culture was mixed gently; bubbling was avoided, with a sterile Pasteur pipette, and returned to the 37°C incubator for another 24 hours. 5 µg of colchicine was added to each culture at 48 hours and mixed gently and thoroughly with a Pasteur pipette. It was incubated at 37°C for an additional 4 hours.

2.6.3. Harvesting and hypotonic treatment of cells: Each culture was transferred to a 15 ml conical centrifuge tube and centrifuged at 200 x g for 8 min at 52 hours. The supernatant was removed carefully

with a Pasteur pipette. 1.0 ml of 0.075 M KCl was added slowly to the cells without disturbing the pellet. The culture was mixed gently with a Pasteur pipette and bubbling was avoided. The cultures were returned to the 37°C incubator for 10 min, centrifuged them at 1200 rpm for 10 min.

2.6.4. Fixation: The supernatant was carefully removed with a Pasteur pipette leaving a volume approximately 0.25 ml including the cell pellet. Chilled fixative (glacial acetic acid: methonal, 1:3) was added very slowly down the inside of tube to avoid clumping of the lysed cells. When the total volume of the culture and fixative become 1.0 ml, mixed it gently by rapid pipetting. 1.0 ml of fixative was then added to bring the volume to 2.0 ml and mixed the culture again. At this point the culture was tightly capped and refrigerated overnight.

2.6.5. Slide preparation and staining: Before slide preparation culture was centrifuged at 1200 rpm for 5 minutes, removed the supernatants fixative (leaving the volume of 0.5 ml), and added 1.5 ml of fresh fixative. This washing procedure was repeated two more times before using this for slide preparation. Two drops of above suspension were dropped on to a clean, chilled, wet slide. The sides and back of slide were quickly blotted and simultaneously blew once across slide and placed onto slide warmer to dry. Slides were immediately coded with a random number, which had been correlated with the animal number. The dried slides were stained in 4% Giemsa (in phosphate buffer pH 6.8). Slides were dried thoroughly, and cover slips were applied.

2.6.6. Metaphase scoring: Hundred well spread intact metaphases were scored through blind scoring from each animal number under 100 x oil immersion. The abnormalities suggested by the "Ad Hoc Committee of Environmental Mutagen Society and The Institute for Medical Research" (1972) were considered which included chromatid and chromosome breaks, fragments of untraceable origin. Chromatid and chromosome gaps were recorded but were not included as aberrant features in the final evaluation (Myles et al., 1978). The values were calculated by using following formula (Singh and Saxena, 2002).

2.6.7. Frequency of aberrant cells:

$$\text{Frequency of aberrant cells} = \frac{\text{Total aberrant cells}}{\text{Total No. of cells studied}}$$

2.6.8. Percentage of aberrations:

$$\text{Percentage of aberrations} = \frac{\text{Total aberration (excluding gaps)}}{\text{Total No. of cells studied}} \times 100$$

2.7 Statistical Analysis:

The data collected are compared by 't' test and expressed as mean \pm SE.

3. RESULTS:

The metaphase analysis of the lymphocytes revealed various types of chromosomal aberrations, which consisted of chromatid, chromosome gaps and breaks, and fragments. Relatively higher frequencies of gaps and fragments were observed for all the doses tested (Table 1). A quantitative assessment of the distribution of breaks and gaps revealed that the

distal regions of the long chromosomes were more vulnerable to the effects of LCT. The frequency of CA is increased with increasing concentrations of LCT (Fig. 2), and statistically non-significant ($P > 0.05$). Differences from the negative control were observed, except at the 30 days sub acute treatment ($P < 0.05$). The mean of the induced CA were range from 0.8 ± 0.55 to 3.6 ± 0.55 in different treatment groups, while in recovery groups it was 1.6 ± 0.84 on comparison to controls. Such values were much lower than those induced by the positive control Mitomycin C (1.5 mg/kg bwt) (15.2 ± 1.2).

Table 1. Chromosomal aberration analysis in peripheral blood lymphocytes of albino rat, *R. norvegicus*

S. No.	Treatment	Dose (mg/kg b. w.)	No. of individuals treated	Treatment time (in days)	No. of Cells / animal	Chromosomal aberration		Total	% of aberration without gap		Frequency of aberrant cell			
						Gap	Break		Mean \pm S.E.	Significance	Mean \pm S.E.	Significance		
						Chromatid	Chromosome	Chromatid	Chromosome	Fragments	Without Gap	With Gap		
1.	Negative Control		5	01	250/5	1	-	1	-	1	2	3	0.8 ± 0.55	0.004 ± 0.004
2.	Acute	18	5	01	250/5	2	-	1	-	1	2	4	0.8 ± 0.55	$p>0.05$
3.	Negative Control		5	02	250/5	1	-	1	-	1	2	3	0.8 ± 0.55	0.004 ± 0.004
4.	Acute	18	5	02	250/5	1	-	1	-	2	3	4	1.2 ± 0.55	$p>0.05$
5.	Negative Control		5	15	250/5	1	1	-	1	1	2	4	0.8 ± 0.55	0.008 ± 0.005
6.	Sub-acute	0.6	5	15	250/5	2	1	1	1	1	3	6	1.2 ± 0.55	$p>0.05$
7.	Negative Control		5	30	250/5	1	-	1	-	1	2	3	0.8 ± 0.55	0.008 ± 0.005
8.	Sub-acute	0.6	5	30	250/5	1	1	2	3	4	9	11	3.5 ± 0.55	$p<0.05$
9.	Negative Control		5	45	250/5	2	-	-	1	1	2	4	0.8 ± 0.55	0.008 ± 0.005
10.	Recovery	0.0	5	45	250/5	1	1	1	1	2	4	5	1.6 ± 0.84	$p>0.05$
11.	Positive Control	1.5	5	2	250/5	13	11	15	12	11	38	62	15.2 ± 1.2	$p<0.001$

4. DISCUSSION:

In the present investigation, non-significant induction of clastogenic activity of 3-cyhalothrin has been observed in acute, sub acute (15ds) treatment, and recovery groups, while in 30ds sub acute treatment clastogenic potential has been observed. Similarly workers of USEPA (1989) and WHO (1990) working group failed to observe clastogenic potential under LCT stress, while Campana et al. (1999), Fahmy and Abdalla (2001) and Celik et al. (2003) demonstrated clastogenic potential of λ -cyhalothrin in fish, mouse and wistar rat in red blood cells and bone marrow, respectively. The findings in the present studies are in accordance to previous reports on the clastogenic potential of synthetic pyrethroids as manifested in rodent bone marrow (Amer et al.,

1993; Hrelia et al., 1994; Dianovsky and Sivikova, 1995; Nakano et al., 1996; Oraby, 1997; Singh and Saxena, 2002; Celik et al., 2003) in human peripheral lymphocyte cultures (Surrelles et al., 1990; Dolara et al., 1992; Barrueco et al., 1994; Dianovsky and Sivikova, 1995), in CHO cells (Caballo et al., 1992; Barrueco et al., 1992) and in aquatic organisms (Campana et al., 1999; Caves and Ergene-Gozukara, 2003).

The effect of LCT seems to be time of exposure and concentration dependent. In 30ds sub acute treatment a significant difference in aberration has been observed, might be due to the longer duration of treatment. Hence, LCT has greater potential for inducing chromosomal aberration in long duration treatments, while its effect has been found to be non-significant in short term treatment

(Bhunya, and Pati, 1990; Ghosh et al., 1992; Carfagna et al., 1996; Celik et al., 2003). In addition, chemicals that cause damage to lysosomes and membranes of cellular system, induce the release of lysosomal or other DNAase into the cytoplasm of damaged cell and induce DNA double strand break and in those cells that survive sub lethal damage, such double strand breaks could have a variety of genotoxic effects such as mutation, chromosome aberration (Sharma, 2004).

The clastogenic property of LCT may be due to its ability to cause degenerative and necrotic damage to mammalian tissue like other pesticides (Rahman et al., 2000; Kokuritsu et al., 2003), which may probably induce lysosomal damage and release of hydrolytic enzymes. Release of hydrolytic enzymes as a result of lysosomal damage following cybil intoxication has been observed (Singh and Saxena, 2001; Saxena and Doneriya, 2004). Further, cypermethrin has been seen causing major degenerative changes in rat bone marrow cells (Pandey, 2001; Singh & Saxena, 2002).

The frequency of chromosomal aberrations was directly related to the concentration used and duration after exposure to fenvalerate in Swiss albino mice (Carfagna et al., 1996), while cytolethality was time; concentration and cell number dependent in rats is already a known fact. Further, Chauhan et al., (1997) observed greater potential of cypermethrin and deltamethrin as genotoxic agent in mice. It is thus evident that different kinds of mechanism are responsible for toxicity and clastogenicity on one side and DNA breakage and gene mutation on the other side (Sharma, 2004).

The non-significant increase in recovery group is also supported by Amer and Aboul-Ela (1985), who found that frequency of chromosomal aberration returning to normal levels of control after 14ds recovery following cypermethrin toxicity in mice, while Amer et al. (1993) revealed percentage of chromosomal aberration to be decreased as time lapses after treatment. Similarly, Sharma et al. (1988) observed that elevation in the frequency was steep up to 10th day, but it was slowed down with an increase in dose and time after 2, 4-DB acid toxicity in mice. Similar mechanism may also be responsible for non-significant increase of chromosomal aberration in recovery group.

The selected cyno group derivative (λ -cyhalothrin, type-II pyrethroid) has a potential to induce genotoxic alterations in peripheral blood leucocytes particularly lymphocytes which forces its regulated application in the ecosystem else the chemical may prove its worth as a future mutagen like the conventional IInd and IIIrd generation pesticides of yester years.

5. REFERENCES:

Agrawal DK, Chauhan LKS, Gupta SK and Sundararaman V. 1994. Cytogenetic effects of deltamethrin on rat bone marrow. *Mutation Res*, 311: 133-138.

Amer SM and Aboul-El El. 1985. Cytogenetic effects of pesticide: induction of micronuclei in mouse bone marrow by the insecticides cypermethrin and rotenone. *Mutation Res*, 55: 135-142.

Amer SM, Ibrahim AS and El-Sherbeny KM. 1993. Induction of chromosomal aberrations and sister chromatid exchange *in vivo* and *in vitro* by the insecticide cypermethrin. *J Appl Toxicol*, 13: 341-345.

Barrueco CA, Herrera A, Cabolla C and De La Penda E. 1994. Induction of structural chromosomal aberrations in human lymphocyte cultures and CHO cells by permethrin. *Teratog Carcinog Mutagen*, 14: 31-38.

Barrueco C, Herrera A, Cabolla C and De La Penda E. 1992. Cytogenetic effects of permethrin in cultured human lymphocytes. *Mutagenesis*, 7: 433-437.

Bhunya SP and Pati PC. 1990. Effect of deltamethrin, a synthetic pyrethroid, on the induction of chromosome aberrations, micronuclei, sperm abnormalities in mice. *Mutagenesis*, 5: 229-232.

Caballo C, Herrera A, Barrueco C, Santa-Maria A, Sanz and de la Pana E. 1992. Analysis of cytogenetic damage induced in CHO cells by the pyrethroid insecticide fenvalerate. *Teratog Carcinog Mutagen*, 12: 243-49.

Campana MA, Panzeri AM, Moreno VJ and Dulout FN. 1999. Genotoxic evaluation of the pyrethroid lambda-cyhalothrin using the micronucleus test in erythrocytes of fish *Cheirodon interruptus*. *Mutation Res*, 438: 155-161.

Carfagna MA, Young KM and Jr Susick LR. 1996. Sex differences in rat hepatic cytolethality of the protein kinase-C inhibitor safingol: Role of biotrasformation. *Toxi App Pharma*, 137: 173-81.

Caves T and Ergene-Gozukara S. 2003. Evaluation of the genotoxic potential of lambda-cyhalothrin using nuclear and nucleolar biomarkers on fish cells. *Mutation Res*, 534: 93-99.

Celik A, Mazmancı B, Çamlıca Y, Ali A and Çömeleko U. 2003. Cytogenetic effects of lambda-cyhalothrin on Wistar rat bone marrow. *Mutation Res*, 539: 91-97.

Chauhan LK, Agrawal DK and Sundararaman V. 1997. *In vivo* induction of sister chromatid exchange in mouse bone marrow following oral exposure to commercial formulations of alpha-cyano pyrethroids. *Toxicol Lett*, 93: 153-57.

Dianovsky J and Sivikova K. 1995. *In vivo and in vitro* cytogenetic effect of supermethrin. *Biomed Environ Sci*, 8: 359-366.

Dolara P, Salvadori M, Capobianco T. and Torricelli F. 1992. Sister chromatid exchanges in human lymphocytes induced by dimethoate, omethoate, deltamethrin, benomyl and their mixture. *Mutation Res*, 283: 113-118.

Fahmy AM and Abdalla EF. 2001. Cytogenetic effects by the natural pyrethrins and the synthetic lambda-cyhalothrin in mice *in vivo*. *Cytologia*, 66: 139-149.

Finney DJ. 1971. Probit analysis. Cambridge University Press, pp: 303.

Ghosh AK, Sharma A and Talukder G. 1992. Cytotoxic effect of Sumicidin, a type II synthetic pyrethroid, on mice *in vivo* at 6, 12 and 24 h after exposure. *Cytobios*, 71: 85-91.

Hayashi M, Tice RR, Macgregor JT, Anderson D, Blakey DH, Kirsch-Volders Jr. M, Oleson FB, Pacchierotti F, Romagna F, Shimada H, Sutou S and Vannier B. 1994. *In vivo* rodent erythrocyte micronucleus assay. *Mutation Res*, 312: 293-304.

Heddle J.A. 1973. A rapid *in vivo* test for chromosomal damage. *Mutation Res*, 18: 187-190.

Hrelia P, Vigagni F, Maffei F, Morotti M, Colacci A, Perocco P, Grilli S and Cantelli FG. 1994. Genetic safety evaluation of pesticides in different short-term tests. *Mutation Res*, 321: 219-28.

Kokuritsu I, Shokuhin E and Kenkyusho H. 2003. Twenty eight day repeated doses oral toxicity test of synergist of pyrethroid insecticide, 2,3,3,3',2',3',3',3'-octachlorodipropyl ether (S-421) in rats. *J Kok Lya Sho Eis Ken Hok (Jap)*, 121: 40-47.

Myles L, Jr. Mace, Yerach D and Wayne Q. 1978. Scanning electron microscopy of chromosomal aberrations. 52: 199-206.

Nakano E, Rabella-Gay MN and Pereira CA. 1996. Evaluation of the genotoxic potential of flumethrin in mouse bone marrow chromosomal analysis and micronucleus test, *Teratog. Carcinog. Mutagen*, 16: 37-48.

Oraby HA. 1997. Micronuclei formation in bone marrow cells of rats treated with meothrin (synthetic pyrethroid). *J Appl Toxicol*, 17: 353-356.

Pandey S. 2001. Effect of synthetic pyrethroid on certain hematotoxicological parameters on *Rattus norvegicus*. PhD Thesis, Department of Zoology, Dr. B.R.A. University, Agra.

Pati C, and Bhunya SP. 1989. Cytogenetic effects of fenvalerate in mammalian *in vivo* test system. *Mutation Res*, 222: 149-54.

Rahman MF, Siddiqui MK and Jamil K. 2000. Acid and alkaline phosphatase activities in a novel phosphorothionate (RPR-II) treated male and female rats. Evidence of dose and time dependent response. *Drug Chem. Toxicol*, 23: 497-509.

Report of the Ad Hoc Committee of Environmental Mutagen Society and the Institute for Medical Research. Chromosome Methodologies in mutation testing. (1972). *Toxicol Appl Pharmacol*, 22: 269-75.

Saxena PN and Doneriya R. 2004. Hepatobiochemical response in albino rat following oral administration of cybil and hafen. *Toxicol Int*, 11: 23-26.

Saxena PN and Sharma DC. 2002. Role of sex and route of administration in determining LD₅₀ of lambda cyhalothrin in wistar rats. *Ind J Environ Toxicol*, 12: 92-93.

Schmidt W. 1973. Chemical mutagen testing on *in vivo* somatic mammalian cells. *Agents Actions*, 3: 77-85.

Sharma DC. 2004. Cytogenetic and biochemical alterations in the blood of albino rat after synthetic pyrethroid intoxication. Ph. D. Thesis. Dr. B.R.A. University, Agra.

Sharma GP, Sobti RC and Gill RK. 1988. Studies on the effect of 2,4-DB acid on mice. *J Environ Biol*, 9: 429-34.

Singh VK and Saxena PN, 2001. Effect of cybil (Cypermethrin 25EC) and cybil-sevin (Carbaryl 50EC) combination on liver and serum phosphatase in wistar albino rats. *J Ecophysiol Occup Health*, 1: 229-34.

Singh VK and Saxena PN. 2002. Genotoxic potential of cypermethrin in mammalian haemopoietic system. *Him J Env Zool*, 16: 195-202.

Surralles J, Carbonell E, Puig M, Xamena N, Creus A and Marcos R. 1990. Induction of mitotic micronuclei by fenvalerate in cultured human lymphocytes. *Toxicol Lett*, 54: 151-155.

Triman KI, Davisson MT and Roderick IH. 1975. A method for preparing chromosomes from peripheral blood in the mouse. *Cytogenet Cell Genet*, 15: 166-176.

USEPA. 1989. Pesticide fact sheet number 171: Karate Office of pesticides and toxic substances. Washington, D.C., pp: 2-9.

WHO Working Group. 1990. Cyhalothrin. *Environ Health Criteria*, pp: 99.

Morphometrical variation and suspected gregariousness in *Oedaleus abruptus* Thunberg (Orthoptera: Acrididae) under laboratory conditions

F. R. KHAN¹ and ARSHAD ALI²

¹Department of Biology, Deanship of Educational Affairs, Qassim University, Buraidah, KSA

²Department of Zoology, Agra College, Agra, India

Correspondence: insectqh11@gmail.com

Article Information	Abstract
<p>Article history: Received: 21.10.2012 Revised: 26.12.2012 Accepted: 02.01.2013</p>	<p>The present study deals with the morphometric variation in adult <i>Oedaleus abruptus</i> under eight experimental set-ups including different temperature (37° and 27°C) and food (<i>Zea mays</i> and <i>Cynodon dactylon</i>). The findings revealed a significant impact of different experimental conditions on the gregariousness of <i>Oedaleus abruptus</i>. Sixteen body parts were selected for morphometrical analysis and these measurements used in different body ratios and statistically analysed to know the extent of gregariousness.</p>
<p>Keywords: Abiotic factors, <i>Oedaleus abruptus</i>, Morphometrics</p>	

1. INTRODUCTION:

Morphometrics are the measurements of morphological changes, during the life of an insect. Uvarov (1921) proposed the phase theory for *Locusta migratoria migratoria* (L), in which he distinguished phase gregarria from phase solitaria by using certain morphometrical indices. Zolotarevsky (1929) in his work on *Locusta migratoria capito* used the same measurements earlier used by Uvarov but reversed the ratios. Subsequently, Maxwell-Darling (1934) in his work on *Schistocerca gregaria* introduced few more ratios for phase determination. Finally there are a number of ratios which are internationally accepted for phase determination in locusts and their allied groups. In the present study, apart from using internationally accepted ratios, few new ratios are introduced to find out the hidden locust phase in this acridid species.

Morphometrical studies on acridids are generally confined to locusts and their related groups, which are migratory in habit. Generally, there are ten species of grasshoppers, which have shown permanent innate characteristics of being a locust, shows polymorphism and are migratory in nature but there are some non-migratory acridoids, which occasionally show polymorphism when they get conducive environment. Most of the morphological differences between polymorphic adults are quantitative and can best be appreciated by the application of exact measurements and statistical analysis. There are certain ecological factors for a

solitary grasshopper, which force them to become locust. Therefore, the morphometrics of *Oedaleus abruptus* were carried out on certain body parts to obtain the rate of increase.

Oedaleus abruptus belongs to the sub family Oedipodinae of family Acrididae. It is a devastating pest of graminaceous crops in north India. It is widely distributed in Pakistan, Bangladesh, Afghanistan, Sri Lanka, Thailand, Malaysia etc. This pest inflicts damage to Maize (*zea mays*), Sorghum (*Sorghum vulgare*), Pearl millet (*Pennisetum typhoideum*), Wheat (*Triticum aestivum*), Sugarcane (*Saccharum officinarum*), Paddy (*Oryza sativa*) and while attacking these crops showing a peculiar behaviour of band formation (Khan and Ali, 2012).

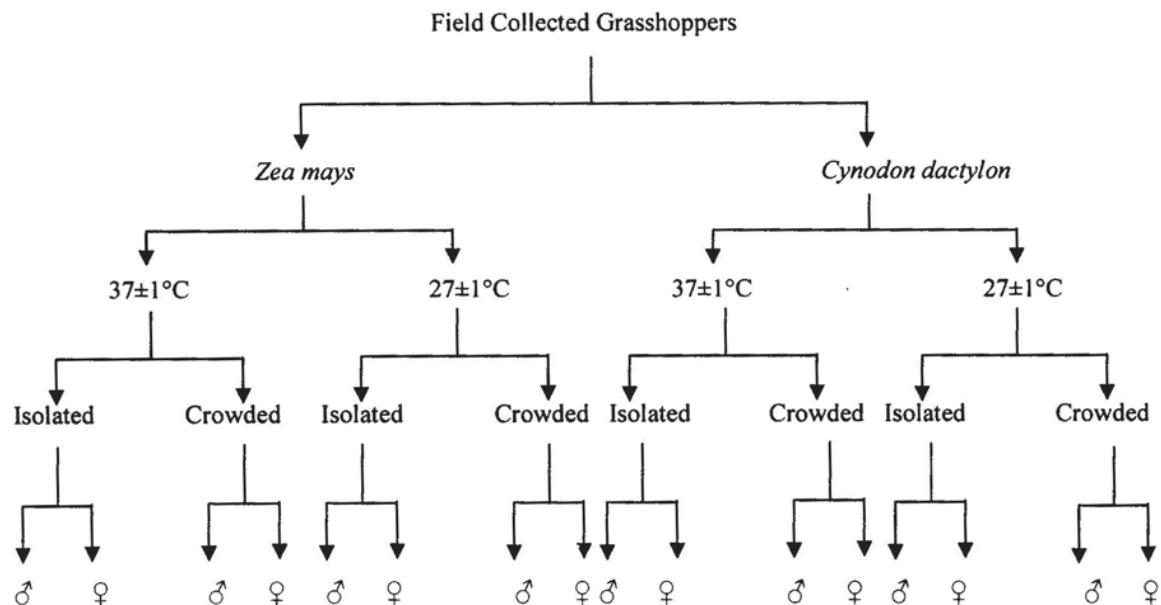
The objective of the present work was to study the impact of different environmental factors on the morphometrics of *Oedaleus abruptus* in the different experimental set-ups to quantify the hidden locust behaviour as in the locusts.

2. MATERIALS AND METHODS:

2.1. Collection Sites and Habitat:

The nymphs and adult of *Oedaleus abruptus* were collected from suburban area of district Aligarh viz., Scindhia fort, Patwari ka nagla, Panethi, Kwarsi, Ausafpur, Kidhara, Bairamgari and Talaspur. The collection sites are located in the western part of Uttar Pradesh, India at a distance of about 126 km from New Delhi, the capital of country. It spreads

from 27°29' to 28°10' North latitude and 77° 29' to 78° 38' East longitude. The greatest width from west to east is about 116 km and the maximum length from north to south is about 72 km.


2.2. Rearing of *Oedaleus abruptus*:

Mature and immature stages of *Oedaleus abruptus* were collected from the fields of different graminaceous crops viz., Maize, Sorghum, Barley, Wheat, Sugarcane and pastures predominantly in the monsoon season by sweeping net and brought to the laboratory for rearing in specially designed wooden cages (53 x 40 x 30 cm). Three sides of the cage were made up of wood with glass panel on the front. The central portion of floor of cages provided with wire mesh for proper ventilation while sides of the floor made up of wood. One side of floor of cages were

provided with holes (diameter 4.00 cm) for metallic egg laying tubes of 4.0 x 10.5 cm in size, filled with sterilized sand for egg laying. An electric bulb was also fitted in one corner on the roof to regulate the temperature and photoperiod as needed by changing the wattage of bulb.

Each cage was provided with a few dry wood sticks for perching, moulting, basking of grasshoppers and also for supporting the leaves supplied as diet (*Zea mays* and *Cynodon dactylon*). The field-collected grasshoppers were separated into two groups; one fed on *Z. mays* while other on *C. dactylon* and reared in wooden cages in thermo regulated insectary at 37°C and 27°C (Fig. 1). The egg laying tubes from both wooden cages were kept separately in glass jars (15 x 20), covered with muslin cloth and incubated at 27±1°C and 37±1°C and relative humidity of 70± 5 %.

Fig. 1. Experiment plan

The egg pods were moistened daily according to their requirement. After definite incubation period the newly hatched grasshoppers were transferred to other glass jars (15 x 20 cm) by using aspirator and again separated in two groups. One kept in isolated condition and other in crowded condition. When the hoppers attained the adult stage they were transferred to the cages. In isolated condition, a single individual was reared and in crowded condition, 50 individuals were kept together in the same size of jars. Mortality in the main experimental setup may affect the results, therefore, three set of parallel experiments were run to maintain the number of grasshoppers in the main experimental setup (Khan and Ali, 2012). Further to testify the extent of impact of different experimental conditions

on the gregariousness of *O. abruptus*, morphometrics of different body parts were done as per suggestions of Albrecht (1953).

2.3. Morphometrics:

Linear measurements of various body parts of male and female *O. abruptus* were made separately with the help of Dial Vernier calliper. For denoting the different parts of the body of grasshoppers the terminology used by Albrecht (1953) was adopted. All measurements were made on 30 males and 30 females for each condition. The ratio of different body parts of *O. abruptus* were taken to ascertain their gregariousness.

3. RESULTS AND DISCUSSION:

Grasshoppers change body colour, dimension, physiology and behaviour in response to different environmental condition as in the present experimental setup. The morphometrics of their body

parts can be quantify in better way. The results of measurements of different body parts revealed an impact of different experimental set-ups and showed corroboration with the overview of Cisneiros *et al.*, 2012).

Table 1. Means, Standard errors and Standard deviations of crowded and isolated adults of *O. abruptus* at $37 \pm 1^\circ\text{C}$ fed on two different foods

Symbols	Males				Females			
	Crowded/ <i>Zea mays</i>	Isolated/ <i>Zea mays</i>	Crowded / <i>C. dactylon</i>	Isolated / <i>C. dactylon</i>	Crowded / <i>Zea mays</i>	Isolated / <i>Zea mays</i>	Crowded / <i>C. dactylon</i>	Isolated / <i>C. dactylon</i>
B	1.44 \pm 0.020 (0.065)	1.42 \pm 0.020 (0.065)	1.59 \pm 0.046 (0.146)	1.61 \pm 0.016 (0.076)	1.96 \pm 0.026 (0.084)	1.92 \pm 0.019 (0.073)	1.88 \pm 0.042 (0.135)	1.90 \pm 0.049 (0.157)
C	0.27 \pm 0.005 (0.017)	0.23 \pm 0.003 (0.009)	0.27 \pm 0.003 (0.009)	0.28 \pm 0.006 (0.019)	0.33 \pm 0.005 (0.017)	0.26 \pm 0.004 (0.013)	0.32 \pm 0.006 (0.021)	0.32 \pm 0.007 (0.024)
M	0.24 \pm 0.005 (0.016)	0.23 \pm 0.004 (0.012)	0.24 \pm 0.005 (0.018)	0.23 \pm 0.006 (0.021)	0.30 \pm 0.005 (0.016)	0.21 \pm 0.003 (0.015)	0.28 \pm 0.002 (0.009)	0.29 \pm 0.005 (0.018)
Mx	0.28 \pm 0.006 (0.019)	0.26 \pm 0.003 (0.011)	0.25 \pm 0.002 (0.008)	0.26 \pm 0.005 (0.015)	0.34 \pm 0.03 (0.012)	0.23 \pm 0.003 (0.015)	0.31 \pm 0.004 (0.015)	0.33 \pm 0.005 (0.018)
P	0.35 \pm 0.003 (0.011)	0.35 \pm 0.004 (0.013)	0.33 \pm 0.008 (0.026)	0.24 \pm 0.008 (0.026)	0.43 \pm 0.005 (0.016)	0.31 \pm 0.003 (0.013)	0.40 \pm 0.010 (0.032)	0.41 \pm 0.005 (0.018)
H	0.30 \pm 0.002 (0.009)	0.32 \pm 0.003 (0.011)	0.32 \pm 0.006 (0.019)	0.30 \pm 0.006 (0.020)	0.34 \pm 0.003 (0.012)	0.28 \pm 0.002 (0.009)	0.33 \pm 0.004 (0.013)	0.33 \pm 0.004 (0.013)
V	0.11 \pm 0.002 (0.008)	0.11 \pm 0.003 (0.010)	0.11 \pm 0.002 (0.009)	0.11 \pm 0.003 (0.011)	0.13 \pm 0.002 (0.007)	0.12 \pm 0.003 (0.008)	0.12 \pm 0.001 (0.004)	0.12 \pm 0.002 (0.009)
D	0.10 \pm 0.002 (0.009)	0.10 \pm 0.003 (0.010)	0.09 \pm 0.002 (0.008)	0.10 \pm 0.003 (0.010)	0.13 \pm 0.006 (0.006)	0.10 \pm 0.002 (0.006)	0.11 \pm 0.002 (0.007)	0.11 \pm 0.002 (0.007)
AF	0.31 \pm 0.004 (0.013)	0.29 \pm 0.003 (0.012)	0.28 \pm 0.006 (0.019)	0.30 \pm 0.010 (0.033)	0.33 \pm 0.006 (0.021)	0.25 \pm 0.004 (0.015)	0.31 \pm 0.009 (0.028)	0.33 \pm 0.004 (0.014)
MF	0.34 \pm 0.003 (0.011)	0.32 \pm 0.002 (0.007)	0.32 \pm 0.005 (0.018)	0.33 \pm 0.007 (0.024)	0.36 \pm 0.004 (0.015)	0.28 \pm 0.003 (0.013)	0.37 \pm 0.005 (0.016)	0.37 \pm 0.005 (0.015)
F	0.95 \pm 0.016 (0.053)	0.89 \pm 0.005 (0.016)	0.89 \pm 0.014 (0.047)	0.92 \pm 0.018 (0.059)	1.02 \pm 0.013 (0.041)	0.74 \pm 0.007 (0.029)	0.99 \pm 0.010 (0.033)	1.01 \pm 0.014 (0.044)
Ti	0.85 \pm 0.015 (0.049)	0.78 \pm 0.018 (0.059)	0.68 \pm 0.018 (0.060)	0.82 \pm 0.020 (0.066)	0.92 \pm 0.014 (0.046)	0.65 \pm 0.007 (0.051)	0.77 \pm 0.016 (0.051)	0.83 \pm 0.026 (0.082)
E	1.83 \pm 0.024 (0.078)	1.83 \pm 0.023 (0.075)	1.80 \pm 0.047 (0.150)	1.87 \pm 0.028 (0.090)	1.72 \pm 0.039 (0.124)	0.45 \pm 0.009 (0.055)	1.75 \pm 0.027 (0.087)	1.74 \pm 0.044 (0.140)
O	0.16 \pm 0.003 (0.009)	0.15 \pm 0.001 (0.005)	0.16 \pm 0.003 (0.009)	0.16 \pm 0.003 (0.009)	0.18 \pm 0.004 (0.012)	0.16 \pm 0.002 (0.008)	0.15 \pm 0.004 (0.013)	0.16 \pm 0.005 (0.017)
Oh	0.11 \pm 0.002 (0.006)	0.11 \pm 0.002 (0.006)	0.12 \pm 0.002 (0.008)	0.12 \pm 0.002 (0.009)	0.13 \pm 0.003 (0.012)	0.11 \pm 0.002 (0.006)	0.11 \pm 0.001 (0.004)	0.12 \pm 0.003 (0.009)
A	0.81 \pm 0.007 (0.025)	0.82 \pm 0.008 (0.026)	0.81 \pm 0.006 (0.021)	0.81 \pm 0.006 (0.021)	0.74 \pm 0.007 (0.023)	0.45 \pm 0.004 (0.017)	0.72 \pm 0.007 (0.007)	0.72 \pm 0.008 (0.025)

B = Length of body

C = Max. width of head

M = Min. width of pronotum

Mx = Max. width of pronotum

P = Length of pronotum

H = Height of pronotum

V = Width vertex between eyes

D = Perpendicular distance

AF = Length of anterior femur

MF = Length of middle femur

F = Length of posterior femur

Ti = Length of posterior tibia

E = Length of elytron

O = Vertical diameter of eye

Oh = Horizontal diameter of eye

A = Length of antenna

Table 2. Means, Standard errors and Standard deviations of crowded and isolated adults of *O. abruptus* at 27±1°C fed on two different foods

Symbol	Males				Females			
	Crowded/ <i>Zea mays</i>	Isolated/ <i>Zea mays</i>	Crowded / <i>C. dactylon</i>	Isolated/ <i>C. dactylon</i>	Crowded / <i>Zea mays</i>	Isolated/ <i>Zea mays</i>	Crowded/ <i>C. dactylon</i>	Isolated/ <i>C. dactylon</i>
B	1.57±0.024 (0.078)	1.48±0.030 (0.096)	1.59±0.024 (0.077)	1.62±0.029 (0.094)	1.87±0.020 (0.064)	1.82±0.047 (0.150)	1.82±0.025 (0.080)	1.76±0.020 (0.065)
C	0.24±0.002 (0.008)	0.25±0.005 (0.015)	0.26±0.007 (0.023)	0.26±0.003 (0.009)	0.29±0.008 (0.026)	0.27±0.008 (0.027)	0.29±0.008 (0.028)	0.31±0.005 (0.018)
M	0.22±0.004 (0.015)	0.21±0.006 (0.021)	0.24±0.008 (0.027)	0.22±0.004 (0.014)	0.25±0.005 (0.017)	0.25±0.010 (0.034)	0.23±0.003 (0.010)	0.26±0.005 (0.018)
Mx	0.24±0.004 (0.014)	0.24±0.004 (0.014)	0.23±0.006 (0.019)	0.24±0.005 (0.018)	0.26±0.007 (0.022)	0.25±0.007 (0.022)	0.25±0.008 (0.026)	0.28±0.005 (0.018)
P	0.31±0.007 (0.022)	0.30±0.006 (0.021)	0.31±0.04 (0.014)	0.32±0.009 (0.029)	0.37±0.008 (0.025)	0.37±0.009 (0.030)	0.36±0.005 (0.017)	0.37±0.008 (0.028)
H	0.30±0.005 (0.015)	0.30±0.004 (0.014)	0.29±0.010 (0.033)	0.28±0.008 (0.025)	0.28±0.013 (0.043)	0.29±0.006 (0.020)	0.30±0.013 (0.042)	0.32±0.006 (0.020)
V	0.11±0.003 (0.012)	0.09±0.002 (0.006)	0.10±0.002 (0.007)	0.12±0.005 (0.017)	0.12±0.002 (0.007)	0.11±0.002 (0.006)	0.11±0.004 (0.013)	0.12±0.004 (0.012)
D	0.09±0.002 (0.008)	0.09±0.002 (0.008)	0.09±0.002 (0.008)	0.10±0.003 (0.011)	0.10±0.001 (0.005)	0.11±0.004 (0.013)	0.12±0.002 (0.008)	0.11±0.003 (0.011)
AF	0.24±0.006 (0.021)	0.26±0.004 (0.013)	0.27±0.006 (0.020)	0.25±0.006 (0.021)	0.25±0.005 (0.017)	0.28±0.011 (0.035)	0.27±0.013 (0.041)	0.28±0.005 (0.017)
MF	0.27±0.012 (0.039)	0.28±0.008 (0.026)	0.29±0.006 (0.021)	0.30±0.006 (0.019)	0.29±0.009 (0.028)	0.28±0.007 (0.024)	0.29±0.007 (0.023)	0.30±0.005 (0.018)
F	0.72±0.018 (0.059)	0.72±0.018 (0.057)	0.73±0.018 (0.058)	0.80±0.017 (0.053)	0.85±0.031 (0.099)	0.85±0.021 (0.066)	0.85±0.013 (0.043)	0.88±0.013 (0.042)
Ti	0.64±0.008 (0.026)	0.64±0.009 (0.029)	0.62±0.007 (0.024)	0.67±0.012 (0.040)	0.71±0.009 (0.029)	0.71±0.013 (0.044)	0.67±0.018 (0.057)	0.76±0.014 (0.046)
E	1.73±0.046 (0.146)	1.59±0.029 (0.516)	1.80±0.019 (0.060)	1.83±0.042 (0.135)	1.62±0.037 (0.118)	1.70±0.031 (0.100)	1.67±0.059 (0.187)	1.71±0.027 (0.086)
O	0.15±0.002 (0.007)	0.14±0.002 (0.009)	0.14±0.005 (0.015)	0.15±0.004 (0.014)	0.15±0.002 (0.006)	0.15±0.004 (0.013)	0.15±0.001 (0.005)	0.16±0.004 (0.013)
Oh	0.10±0.001 (0.005)	0.11±0.001 (0.005)	0.10±0.001 (0.005)	0.12±0.003 (0.012)	0.11±0.002 (0.005)	0.11±0.002 (0.007)	0.10±0.002 (0.006)	0.12±0.003 (0.011)
A	0.71±0.013 (0.043)	0.73±0.006 (0.020)	0.72±0.010 (0.032)	0.72±0.013 (0.040)	0.06±0.014 (0.046)	0.59±0.013 (0.042)	0.66±0.014 (0.045)	0.62±0.018 (0.057)

B = Length of body

C = Max. width of head

M = Min. width of pronotum

Mx = Max. width of pronotum

P = Length of pronotum

H = Height of pronotum

V = Width vertex between eyes

D = Perpendicular distance

AF = Length of anterior femur

MF = Length of middle femur

F = Length of posterior femur

Ti = Length of posterior tibia

E = Length of elytron

O = Vertical diameter of eye

Oh = Horizontal diameter of eye

A = Length of antenna

The measurements of different body parts *i.e.*, body length, maximum width of head, minimum and maximum width of pronotum, length and height of pronotum, width vertex between eyes, perpendicular distance, length of anterior, middle and posterior femur, length of posterior tibia, length of elytron, vertical diameter of eye, horizontal diameter of eye and length of antenna for both male and female were

compared to each other on each experimental set-up including different temperatures and foods. The data (Table 1 & 2) indicated that all body parameters, except few (*i.e.*, length, height and width of pronotum, vertex between eyes, perpendicular distance, vertical and horizontal diameter of eye) showed a significant difference with respect to various experimental set up.

When the standard errors of means of the 16 selected body parts measurements in adults were compared at two different temperature (27 ± 1 & $37\pm 1^{\circ}\text{C}$) and also on different food (*Zea mays* and *Cynodon dactylon*), it was found that in all cases, these were very less different as compared with their respective means. Hence, the mean values can be used as reliable estimates of the phase indices. Further when all these measurements of *Oedaleus*

abruptus were statistically analyzed, it was observed that all of them follow specific pattern of growth and development for different experimental conditions (food and temperatures). Since direct measurements found inadequate for determination of the hidden 'locust in making' behaviour by simple statistical methods. The selected measurements used in present investigations to get ratios on the pattern established by Uvarov (1921, 1966).

Table 3. Mean ratios and standard error in crowded and isolated conditions for adults of *O. abruptus* at $37\pm 1^{\circ}\text{C}$ fed on *Zea mays* and *Cynodon dactylon*

Symbols	<i>Zea mays</i>				<i>Cynodon dactylon</i>			
	Males		Females		Males		Females	
	Crowded	Isolated	Crowded	Isolated	Crowded	Isolated	Crowded	Isolated
P/C	1.28 \pm 0.034 (0.107)	1.28 \pm 0.024 (0.077)	1.31 \pm 0.034 (0.107)	1.32 \pm 0.025 (0.079)	1.22 \pm 0.042 (0.133)	1.27 \pm 0.045 (0.143)	1.24 \pm 0.033 (0.105)	1.20 \pm 0.026 (0.082)
E/F	1.92 \pm 0.33 (0.101)	2.06 \pm 0.028 (0.088)	1.68 \pm 0.042 (0.134)	1.70 \pm 0.011 (0.036)	2.50 \pm 0.083 (0.264)	2.29 \pm 0.077 (0.245)	1.96 \pm 0.065 (0.207)	1.94 \pm 0.040 (0.127)
F/C	3.49 \pm 0.089 (0.281)	3.21 \pm 0.048 (0.152)	3.12 \pm 0.065 (0.207)	3.19 \pm 0.047 (0.150)	2.84 \pm 0.101 (0.319)	3.13 \pm 0.071 (0.026)	2.96 \pm 0.118 (0.375)	2.89 \pm 0.026 (0.081)
F/P	2.75 \pm 0.063 (0.199)	2.51 \pm 0.033 (0.104)	2.40 \pm 0.048 (0.153)	2.44 \pm 0.040 (0.126)	2.35 \pm 0.078 (0.248)	2.49 \pm 0.093 (0.295)	2.38 \pm 0.058 (0.184)	2.41 \pm 0.054 (0.170)
F/O	5.84 \pm 0.156 (0.493)	5.78 \pm 0.064 (0.201)	5.60 \pm 0.171 (0.539)	6.20 \pm 0.097 (0.307)	5.43 \pm 0.215 (0.681)	5.28 \pm 0.192 (0.606)	5.83 \pm 0.086 (0.273)	5.48 \pm 0.131 (0.414)
Ti/C	3.11 \pm 0.088 (0.277)	2.82 \pm 0.072 (0.229)	2.81 \pm 0.066 (0.208)	2.78 \pm 0.057 (0.183)	2.42 \pm 0.079 (0.249)	2.62 \pm 0.052 (0.165)	2.33 \pm 0.083 (0.264)	2.48 \pm 0.035 (0.111)
Ti/F	0.89 \pm 0.010 (0.033)	0.88 \pm 0.021 (0.066)	0.90 \pm 0.007 (0.024)	0.87 \pm 0.014 (0.045)	0.85 \pm 0.022 (0.069)	0.84 \pm 0.006 (0.018)	0.79 \pm 0.025 (0.078)	0.86 \pm 0.010 (0.033)
Ti/P	2.44 \pm 0.054 (0.172)	2.21 \pm 0.055 (0.173)	2.16 \pm 0.041 (0.129)	2.12 \pm 0.049 (0.157)	1.99 \pm 0.026 (0.084)	2.08 \pm 0.075 (0.237)	1.87 \pm 0.029 (0.094)	2.07 \pm 0.048 (0.151)
Ti/O	1.59 \pm 0.127 (0.402)	5.06 \pm 0.097 (0.308)	5.04 \pm 0.155 (0.491)	5.41 \pm 0.154 (0.489)	4.67 \pm 0.167 (0.528)	4.42 \pm 0.156 (0.492)	4.62 \pm 0.138 (0.437)	4.69 \pm 0.074 (0.233)
E/Ti	2.15 \pm 0.36 (0.113)	2.36 \pm 0.63 (0.199)	1.87 \pm 0.058 (0.182)	1.96 \pm 0.039 (0.122)	2.92 \pm 0.033 (0.103)	2.74 \pm 0.086 (0.272)	2.49 \pm 0.116 (0.369)	2.26 \pm 0.051 (0.161)

P/C = Length of pronotum to max. width of head

E/F = Length of Elytron to length of hind femur

F/C = Length of hind femur to max. width of head

F/P = Length of hind femur to length of pronotum

F/O = Length of hind femur to vertical diameter of eye

Ti/C = Length of hind tibia to max. width of head

Ti/F = Length of hind tibia to length of hind femur

Ti/P = Length of hind tibia to length of pronotum

Ti/O = Length of hind tibia to vertical diameter of eye

E/Ti = Length of elytron to length of hind tibia

A number of ratios (between length of pronotum and maximum width of head, length of elytron and length of hind femur, length of hind femur and maximum width of head, length of hind femur and length of pronotum, length of hind femur and vertical diameter of eye, length of hind tibia and maximum width of head, length of hind tibia and length of hind femur, length of hind tibia and length of pronotum, length of hind tibia and vertical diameter of eye, length of elytron and length of hind tibia) of *O. abruptus* were tested at different conditions, and most promising were those between

two measurements, which vary in opposite directions according to the rearing condition and their hidden phase, but in the same direction for both sexes. Such differences in ratios are likely to show the hidden instinct of 'locust in making' more clearly.

The data (Tables 3 & 4) clearly indicated that the variation in different body ratio of *O. abruptus* was quite evident with change in the temperature, food as well as phage (crowded and isolated) and also showed corroboration with the suggestions of Uvarov (1921, 1966) and Albrecht (1953).

Table 4. Mean ratios and standard error in crowded and isolated conditions for adults of *O. abruptus* at $27\pm1^\circ\text{C}$ fed on *Zea mays* and *Cynodon dactylon*

Symbols	Zea mays								Cynodon dactylon							
	Males				Females				Males				Females			
	Crowded	Isolated	Crowded	Isolated	Crowded	Isolated	Crowded	Isolated	Crowded	Isolated	Crowded	Isolated	Crowded	Isolated	Crowded	Isolated
P/C	1.29±0.030 (0.096)	1.24±0.028 (0.088)	1.29±0.060 (0.189)	1.37±0.057 (0.181)	1.25±0.032 (0.100)	1.17±0.043 (0.135)	1.26±0.045 (0.141)	1.26±0.037 (0.117)								
E/F	2.42±0.089 (0.282)	2.24±0.086 (0.271)	1.93±0.092 (0.289)	2.02±0.075 (0.236)	2.03±0.072 (0.228)	2.03±0.042 (0.132)	1.76±0.032 (0.100)	1.723±0.052 (0.166)								
F/C	2.96±0.082 (0.259)	2.93±0.088 (0.278)	2.93±0.126 (0.398)	3.12±0.134 (0.423)	3.36±0.071 (0.226)	3.33±0.083 (0.262)	3.15±0.082 (0.260)	3.15±0.081 (0.255)								
F/P	2.30±0.083 (0.199)	2.36±0.071 (0.225)	2.30±0.110 (0.348)	2.30±0.085 (0.270)	2.70±0.075 (0.236)	2.87±0.088 (0.279)	2.52±0.099 (0.312)	2.51±0.055 (0.175)								
F/O	4.84±0.146 (0.461)	5.04±0.126 (0.401)	5.56±0.209 (0.663)	5.79±0.195 (0.616)	5.74±0.142 (0.449)	5.94±0.163 (0.517)	6.50±0.202 (0.638)	6.29±0.248 (0.785)								
Ti/C	2.64±0.051 (0.161)	2.64±0.082 (0.260)	2.43±0.054 (0.172)	2.64±0.122 (0.386)	2.57±0.072 (0.228)	2.95±0.108 (0.341)	2.43±0.054 (0.171)	2.59±0.093 (0.295)								
Ti/F	0.90±0.022 (0.071)	0.91±0.028 (0.089)	0.84±0.031 (0.099)	0.85±0.029 (0.093)	0.68±0.031 (0.098)	0.88±0.021 (0.066)	0.77±0.013 (0.041)	0.82±0.017 (0.054)								
Ti/P	2.06±0.058 (0.185)	2.12±0.052 (0.166)	1.91±0.056 (0.177)	1.94±0.058 (0.185)	2.07±0.073 (0.229)	2.54±0.102 (0.322)	1.96±0.111 (0.350)	2.06±0.069 (0.221)								
Ti/O	4.31±0.094 (0.298)	4.55±0.136 (0.433)	4.62±0.134 (0.424)	4.88±0.120 (0.381)	4.41±0.178 (0.564)	5.24±0.145 (0.458)	5.01±0.139 (0.440)	5.19±0.283 (0.894)								
E/Ti	2.70±0.089 (0.283)	2.48±0.073 (0.283)	2.30±0.057 (0.181)	2.38±0.037 (0.118)	2.65±0.093 (0.294)	2.31±0.072 (0.227)	2.28±0.029 (0.092)	2.11±0.085 (0.268)								

P/C = Length of pronotum to max. width of head

E/F = Length of Elytron to length of hind femur

F/C = Length of hind femur to max. width of head

F/P = Length of hind femur to length of pronotum

F/O = Length of hind femur to vertical diameter of eye

Ti/C = Length of hind tibia to max. width of head

Ti/F = Length of hind tibia to length of hind femur

Ti/P = Length of hind tibia to length of pronotum

Ti/O = Length of hind tibia to vertical diameter of eye

E/Ti = Length of elytron to length of hind tibia

The difference in the means of ratios between crowded and isolated *O. abruptus* adults of the same experimental setup was found significant and at few

places it was highly significant for both the sexes (Tables 5-6).

Table 5. Differences between means of ratios in crowded and isolated conditions for adults of *O. abruptus* at different temperatures on *Zea mays*

Symbols	37±1°C								27±1°C							
	Crowded males–Isolated males				Crowded females – Isolated females				Crowded males–Isolated males				Crowded females – Isolated females			
	Difference	t	d.f.	P	Difference	t	d.f.	P	Difference	t	d.f.	P	Difference	t	d.f.	P
P/C	-0.004	-0.281	29	0.780	-0.008	-0.321	29	0.750	0.046	2.267	29	0.031	-0.079	-1.809	29	0.080
E/F	-0.143	-6.265	29	0.000	-0.020	-0.854	29	0.399	0.175	2.153	29	0.039	-0.090	-1.157	29	0.256
F/C	0.279	5.654	29	0.000	-0.073	-1.429	29	0.164	0.035	0.515	29	0.610	-0.184	-1.631	29	0.114
F/P	0.230	7.913	29	0.000	-0.038	-1.053	29	0.301	-0.056	-1.213	29	0.235	0.009	0.096	29	0.924
F/O	0.058	0.598	29	0.554	-0.598	-5.801	29	0.000	-0.207	-1.637	29	0.112	-0.235	-1.287	29	0.208
Ti/C	0.292	4.806	29	0.000	0.026	0.582	29	0.565	0.003	0.062	29	0.951	-0.208	-3.236	29	0.003
Ti/F	0.013	0.913	29	0.369	0.028	3.427	29	0.003	-0.008	-0.520	29	0.607	-0.010	-0.333	29	0.740
Ti/P	0.237	5.259	29	0.000	0.034	0.785	29	0.439	-0.065	-1.803	29	0.082	-0.027	-0.573	29	0.571
Ti/O	0.128	1.317	29	0.198	-0.370	-2.978	29	0.006	-0.238	-2.589	29	0.015	-0.264	-3.519	29	0.001
E/Ti	-0.206	-7.096	29	0.000	-0.087	-2.314	29	0.028	0.222	3.355	29	0.002	0.082	-2.741	29	0.010

Table 6. Differences between means of ratios in crowded and isolated conditions for adults of *O. abruptus* at different temperatures on *Cynodon dactylon*

Symbol	37±1°C								27±1°C							
	Crowded males–Isolated males				Crowded females – Isolated females				Crowded males–Isolated males				Crowded females – Isolated females			
	Difference	t	d.f.	P	Difference	t	d.f.	P	Difference	t	d.f.	P	Difference	t	d.f.	P
P/C	0.077	2.270	29	0.031	0.001	0.030	29	0.976	-0.050	-1.953	29	0.060	0.037	1.975	29	0.058
E/F	0.011	0.026	29	0.979	0.041	2.625	29	0.014	0.206	3.194	29	0.003	0.024	0.543	29	0.591
F/C	0.027	0.581	29	0.565	0.004	-0.068	29	0.946	-0.293	-4.999	29	0.000	0.066	0.999	29	0.325
F/P	-0.165	-2.648	29	0.013	0.010	0.222	29	0.825	-0.146	-2.180	29	0.037	-0.031	0.619	29	0.540
F/O	-0.200	-2.088	29	0.045	0.210	0.952	29	0.349	0.146	0.956	29	0.347	0.354	3.519	29	0.001
Ti/C	-0.375	-4.709	29	0.000	-0.164	-2.711	29	0.011	-0.204	-5.912	29	0.000	-0.148	-3.718	29	0.001
Ti/F	-0.113	-4.780	29	0.000	-0.048	-4.981	29	0.000	0.017	1.292	29	0.206	-0.065	-3.746	29	0.001
Ti/P	-0.464	-8.392	29	0.000	-0.108	-1.999	29	0.055	-0.095	-2.904	29	0.045	-0.191	-4.889	29	0.000
Ti/O	-0.826	-8.418	29	0.000	-0.178	-0.942	29	0.354	0.201	1.928	29	0.064	-0.069	-1.045	29	0.304
E/Ti	0.347	5.267	29	0.001	-0.175	4.655	29	0.000	0.184	3.933	29	0.000	0.233	3.007	29	0.005

Table 7. Differences between means of ratios in crowded and isolated conditions for adults of *O. abruptus* at different temperatures on *Zea mays*

Symbol	37±1°C								27±1°C							
	Crowded males–Isolated males				Crowded females – Isolated females				Crowded males–Isolated males				Crowded females – Isolated females			
	Difference	t	d.f.	P	Difference	t	d.f.	P	Difference	t	d.f.	P	Difference	t	d.f.	P
P/C	-0.029	-1.310	29	0.200	-0.034	-3.856	29	0.000	0.032	1.267	29	0.215	-0.122	-3.605	29	0.001
E/F	0.234	7.884	29	0.000	0.358	25.795	29	0.000	0.468	7.057	29	0.000	0.224	3.988	29	0.000
F/C	0.373	5.029	29	0.000	0.021	0.806	29	0.427	0.014	0.242	29	0.811	-0.189	-1.907	29	0.006
F/P	0.348	7.598	29	0.000	0.079	3.634	29	0.001	-0.049	-0.989	29	0.311	0.064	1.204	29	0.238
F/O	0.239	2.171	29	0.038	-0.417	5.735	29	0.000	0.904	-8.466	29	0.000	-0.751	-5.055	29	0.000
Ti/C	0.301	4.789	29	0.000	0.035	1.178	29	0.248	0.277	5.673	29	0.000	-0.000	-0.001	29	0.999
Ti/F	-0.010	-2.015	29	0.053	0.006	0.846	29	0.404	0.087	4.322	29	0.000	0.056	3.915	29	0.000
Ti/P	0.286	7.952	29	0.000	0.082	3.208	29	0.003	0.172	4.247	29	0.000	0.188	4.375	29	0.000
Ti/O	0.152	1.680	29	0.103	-0.345	-5.785	29	0.000	-0.308	-3.056	29	0.005	-0.331	-3.137	29	0.004
E/Ti	0.283	9.865	29	0.000	0.401	17.923	29	0.000	0.278	3.435	29	0.002	0.104	2.284	29	0.029

Table 8. Differences between means of ratios in crowded and isolated conditions for adults of *O. abruptus* at different temperatures on *Cynodon dactylon*

Symbol	37±1°C								27±1°C							
	Crowded males–Isolated males				Crowded females – Isolated females				Crowded males–Isolated males				Crowded females – Isolated females			
	Difference	t	d.f.	P	Difference	t	d.f.	P	Difference	t	d.f.	P	Difference	t	d.f.	P
P/C	-0.013	-0.408	29	0.666	-0.089	-3.140	29	0.004	-0.025	-0.874	29	0.389	0.035	1.433	29	0.163
E/F	0.263	9.212	29	0.000	0.303	6.969	29	0.000	0.538	9.191	29	0.000	0.299	6.149	29	0.000
F/C	0.212	4.664	29	0.000	0.181	3.429	29	0.002	-0.116	-1.344	29	0.189	0.279	6.583	29	0.000
F/P	0.183	2.399	29	0.023	0.358	5.222	29	0.000	-0.031	-0.702	29	0.488	0.170	2.986	29	0.006
F/O	-0.759	-6.618	29	0.000	-0.348	-2.325	29	0.027	-0.406	-3.150	29	0.004	-0.151	-1.431	29	0.163
Ti/C	0.144	2.213	29	0.034	0.355	5.385	29	0.000	0.084	1.329	29	0.194	0.144	4.458	29	0.000
Ti/F	-0.003	-0.173	29	0.864	0.062	3.829	29	0.001	0.060	3.763	29	0.001	-0.029	-2.812	29	0.009
Ti/P	0.115	1.408	29	0.169	0.472	6.709	29	0.000	0.114	4.481	29	0.000	0.069	1.805	29	0.081
Ti/O	-0.604	-3.956	29	0.000	0.048	0.289	29	0.774	-0.007	0.049	29	0.961	-0.280	-4.045	29	0.000
E/Ti	0.367	6.549	29	0.000	0.195	3.478	29	0.002	0.429	5.784	29	0.000	0.435	8.921	29	0.000

The differences of ratios between two sexes of similar rearing condition taken, it was again found highly significant statistically except in a few occasions (Tables 7-8). The difference of means in crowded and isolated males and the difference between crowded and isolated females were statistically analysed, nearly in all cases it was highly significant except E/Ti that was found non-significant at few places.

All ratios were found statistically significant but F/C and E/F found quite promising as it is evident from the present analysis. The standard value for both of these ratios for solitary, transiens and gregarious phases given below:

Standard Morphometrical Ratios:

Phase	F/C	E/F
Solitary	3.75 or above	2.05 or below
Transiens	3.16 – 3.74	2.06 – 2/15
Gregarious	3.15 or below	2.16 or above

The results obtained for these ratios in different experimental set-ups compared with standard values for F/C and E/F and found significantly very close to transiens and gregarious phase in the experimental set-ups with high temperature. Dirsh (1951) evaluated the percentage of morphological gregarization by dividing the difference between standard values for gregarious and solitary phase by 100 individuals. Similarly F/C and E/F ratios in the present study were subjected to this calculation for both species and showed similarity with established locust species as was suspected for their hidden locust in making instinct. The percentage of gregarization is given in table 9, in their respective rearing condition.

Table 9. Percentage of gregarization in *Oedaleus abruptus* at different rearing conditions

Body parts ratios	F/C		E/F	
	♂	♀	♂	♀
Rearing condition	♂	♀	♂	♀
Crowded/ <i>Zea mays</i> /37°C	43	-	-	-
Isolated/ <i>Zea mays</i> /37°C	90	94	18	-
Crowded/ <i>Cynodon</i> /37°C	-	-	-	-
Isolated/ <i>Cynodon</i> /37°C	-	-	-	-
Crowded/ <i>Zea mays</i> /27°C	-	-	-	-
Isolated/ <i>Zea mays</i> /27°C	-	-	-	-
Crowded/ <i>Cynodon</i> /27°C	65	-	1	-
Isolated/ <i>Cynodon</i> /27°C	69	99	1	-

The results obtained from the present study on the morphometrics of different body parts and their ratios under different experimental set-ups revealed significant evidence that species of grasshopper under study may turn to gregariousness when get conducive environmental condition. The different experimental condition also influenced the variation in morphometric measurements and species behave like established locusts.

4. ACKNOWLEDGEMENTS:

The authors thankful to the Chairman, Department of Zoology, Aligarh Muslim University Aligarh for providing necessary laboratory facilities.

5. REFERENCES:

Albrecht FO. 1953. The breeding of the Red Locust in captivity. Bull Ent Res, 44: 1-4.

Cisneiros RA, de Almeida AV, de Melo GR and da Câmara CAG. 2012. Morphometric variations in the grasshopper, *Chromacris speciosa* from two localities of pernambuco in northeastern Brazil. J Insect Sci, 12: 1-10.

Dirsh VM. 1951. A new biometric phase character in locusts. Nature, 167: 281-282.

Khan FR and Ali Arshad. 2012. Studies on the biological attributes of *Oedaleus abruptus* (Orthoptera: Acrididae) under laboratory conditions. World J App Sci Res, 2: 21-27.

Maxwell-Darling RC. 1934. The Solitary Phase of *Schistocerca gregaria*, Forsk., in North-Eastern Kordofan (Anglo-Egyptian Sudan). Bull Ent Res, 25: 63-83.

Song J. 2011. Density-Dependent Phase Polyphenism in Nonmodel Locusts: A Mini review. Psyche, pp: 1-16.

Uvarov BP. 1921. A revision of the genus *Locusta*, L. (=Pachytylus), with a new theory as to the periodicity and migrations of locusts. Bull Ent Res, 12: 135-163.

Uvarov BP. 1966. Grasshoppers and locusts. A hand book of general Acridology, Cambridge University Press, pp: 481.

Zolotarevsky BN. 1929. Le Criquet migrateur (*Locusta migratoria capito* Sauss.) à Madagescar. Ann Epiphyt, 15: 185-236.

Contents available at www.iamt.net.in

World Journal of Applied Sciences and Research
(ISSN 2249-4197)

2013, Volume 3, Issue 1, Pages 23-26

Biosystematics of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) from Asir Region of Saudi Arabia

ZUBAIR AHMAD and REDA F.A. BAKR

Department of Biology, King Khalid University, ABHA, Kingdom of Saudi Arabia

Correspondence: dzubair@gmail.com

Article Information	Abstract
<p>Article history: Received: 01.01.2013 Revised: 20.01.2013 Accepted: 25.01.2013</p>	<p>The present study deals with records on aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) of Asir region, Saudi Arabia. The specimen collected from aphid colonies on wild and cultivated plants, were identified in the laboratory of the department of Biology, King Khalid University, Abha. The findings revealed that five species belonging to four genera viz., <i>Aphidius colemani</i> Viereck, <i>Aphidius matricariae</i> Haliday, <i>Diaeretiella rapae</i> (M'Intosh, 1855), <i>Pauesia</i> sp. and <i>Praon exsoletum</i> (Nees, 1811) recorded for the first time from this region.</p>
<p>Keywords: Aphidiinae, parasitoid, aphid, Saudi Arabia</p>	

1. INTRODUCTION:

Aphids are considered as major pests in many agricultural systems throughout the world. They damage directly by feeding and indirectly as a vector of certain plant diseases (Ali and Rizvi, 2007). Among the natural enemies of aphids, aphidiinae parasitoids are key component, which helps to control aphid population in varieties of crops (Starý, 1988). The Aphidiines are small hymenopteran parasitoids belongs to subfamiliy Aphidiinae of the family Braconidae. They are solitary endoparasitoids of aphids and their size varies from about two to five millimeters. The taxonomy of the group includes about 50 genera and subgenera and approximately over 600 species distributed globally (Sanchis et al., 2001).

The aphidiinae parasitoid fauna of Asir region or rather largely Saudi Arabia is remained unexplored. In spite of recent studies in the adjoining parts of Arabian peninsula (North Africa, Mediterranean region and Central Asia), several areas still remain unexplored as a result of which there are huge gaps in our knowledge of aphidiinae distributions in this area. Several taxonomical studies on aphidiinae parasitoids, as well as on its aphid-plant associations, have been carried out in adjacent areas. A general information is as follows: Israel (Mescheloff and Rosen, 1988a,b; 1990a,b; 1993), Turkey (Aslan et al., 2004; Güz and Kilincer, 2005; Uysal et al., 2004), Southeastern Europe (Kavallieratos et al., 2001, 2004), Iraq (Starý and Kaddou, 1975), Iran (Starý, 1979; Starý et al., 2000,

2005; Rakhshani et al., 2005, 2006, 2007a,b, 2008a,b; Tomanovic et al., 2007; Talebi et al., 2009; Barahoei et al., 2010; Jafari-Ahmabadi et al., 2011; Mossadegh et al., 2011).

One of the reasons for the great diversity in the area is an amazing array of habitats from dense juniper forest at 3000 m, to low land costal line with sufficient cultivated area. This area remains one of a few places globally, which may still harbour species of aphidiines yet unknown to science. From this region, very few papers on the parasitoid fauna reported specially from Yemen (Erdelen, 1981; Starý and Erdelen, 1982). Therefore, present study has been carried out to fill the gaps of aphid-parasitoids particularly on aphidiinae from Saudi Arabia.

2. MATERIALS AND METHODS:

The specimens were collected from wild and cultivated plants bearing aphid colonies along with parasitoids from several parts of Asir region of Saudi Arabia (Fig. 1). The samples were directly placed within the plastic vials (sized 3 x 5 cm) covered with fine mesh cloth and brought to the laboratory for rearing. After 20-25 days, parasitoids completed their development and emerged from the aphid bodies. The parasitoids emerged from aphid host were transferred to 96% ethyl alcohol for preservation and future identification. The sample data were arranged with the objective of developing a tri-trophic database. In each numbered sample, the information about location, date, aphid, plant and habitat was recorded. The detailed description along with types

of identified specimens was deposited in the insect collection of the department of Biology at King Khalid University, Abha, Kingdom of Saudi Arabia.

Fig. 1. Map of the sampling areas at various parts of Asir region in Saudi Arabia.

3. RESULTS:

A total of five aphidiinae parasitoids species belonging to four genera are recorded for the first time from Saudi Arabia.

3.1. *Aphidius colemani* Viereck, 1912

Material examined: 9 female and 3 male, KSA: Abha, 10. V. 2012, *Aphis craccivora* Koch on *Vigna* sp. (coll. Z. Ahmad); 11 female and 4 male, KSA: Abha, 10. IX. 2012, *Aphis craccivora* Koch on *Vigna* sp. (coll. Z. Ahmad); 3 male, KSA: Abha, 10. VI. 2010; *Myzus persicae* (Sulz.) on *Solanum* sp. (coll. Z. Ahmad).

Unknown host material: 2 female; KSA: Raidah, 24. IV. 2011, mal. Trap; 1 male, KSA: Qunfudah, 2. V. 2011, mal. Trap.

Note – A broadly oligophagous species, *Aphis*, *Brachycaudus*, *Myzus*, *Rhopalosiphum*-species.

3.2. *Aphidius matricariae* Haliday, 1834

Material examined: 17 female and 9 male, KSA: Abha, KKU University campus 10. IV. 2012, *Aphis gossypii* Glover on *Aster* sp. (coll. Z. Ahmad)

Unknown host material: 5 female, KSA: Raidah, 7. IV. 2010, mal. Trap; 3 female, KSA: Qunfudah, 14. III. 2010, mal. Trap.

Note – A broadly oligophagous parasitoid on *Aphis*, *Diuraphis*, *Myzus*.

3.3. *Diaeretiella rapae* (M'Intosh, 1855)

Unknown host material: 7 female and 5 male, KSA: Al Soudah, 16. IX. 2011, net sweeping (coll. Z. Ahmad)

Note – A parasitoid of *Brevicoryne brassicae*, *Lipaphis pseudobrassicae*, *Myzus persicae*, less frequently on *Rhopalosiphum maydis*, *R. padi* and *Schizaphis graminum*.

3.4. *Paeusia* sp.

Unknown host material: 3 female, KSA: Raidah, 23. IV. 2010, mal. Trap.

Note – A parasitoid of *Cinara* species on conifers.

3.5. *Praon exsoletum* (Nees, 1811)

Unknown host material: 13 female and 1 male, KSA: Abha, wadi johan, 29. X. 2011, net sweeping on agricultural field; 3 female, KSA: Abha, wadi johan 17. X. 2011, net sweeping on agricultural field.

Note – A parasitoid of *Theroaphis* species.

4. DISCUSSION:

The south-west of Arabia (Asir) is the stronghold of the Arabian endemic flora. The region has a wide diversity of vegetation and topography. Altitude reaches from low land tihama region along costal area of red sea to just over 3,000 m highlands at Jabel al-Soudah and Raidah. The natural forest of juniper *Juniperus procera* in the highlands is probably the most extensive anywhere in Arabia. Also in the highlands, there are thickly wooded *Acacia* valleys of various species but *Acacia tortilis* and *A. mellifera* were the most common noted during the present survey. Terraced agriculture growing cereals, notably wheat (being harvested in July) and maize (harvested in September to October) is predominant in this

region. Apart from this there are several fruits growing orchards like pomegranates, peaches and apricot also present in this region. In the foothills below 1,500 m vegetation becomes much more Afro tropical with numerous *Ficus* trees and genera such as *Aloe*, *Commiphora*, *Ceropogia* and *Caralluma* being well represented. These lusher habitats of the foothills soon give way on the lowland costal area (Tihama) along red sea to arid sandy deserts interspersed with very fertile irrigated fields where water runoff from the highlands can be controlled or where water is close to the surface. These tilled areas usually have high bunds around them and grow a variety of crops like *Saccharum*, *Sorghum bicolor*, *Solanum lycopersicum*, *Pennisetum spicatum*, *Nicotiana tabacum*, *Trifolium alexandrinum*, *Citrullus vulgaris*, *Gossypium* sp., *Zea mays* etc.

Despite being an important hotspot region, studies related biodiversity of aphidiinae insect community are totally neglected. Although aphidiinae parasitoids have major importance in the biological control of aphid pests. Therefore, knowledge of present paper on the biodiversity and biosystematics of Aphidiinae parasitoids provide basic and more essential information to evaluate them in the classical biological control programme of aphids. Further studies on mass production and field evaluation these parasitoids to manage aphids on different agricultural crops in the southern region of Saudi Arabia is needed.

5. ACKNOWLEDGMENTS:

The present research is supported from the grant no 281 by Deanship of Research and Scientific Studies, King Khalid University, Abha (Second Annual Research Programme). The author is also indebted to Head, Department of Biology, King Khalid University, Abha for providing necessary research laboratory.

6. REFERENCES:

Ali A and Rizvi PQ. 2007. Development and predatory performance of *Coccinella septempunctata* L. (Coleoptera: Coccinellidae) on different aphid species. *J Biol Sci*, 7: 1478-1483.

Aslan MM, Uygun N and Starý P. 2004. A survey of aphid parasitoids in Kahramanmaraş, Turkey (Hymenoptera, Braconidae, Aphidiinae; and Hymenoptera Aphelinidae). *Phytopara*, 32: 255-263.

Barahoei H, Mandjdzadeh SM, Mehrparvar M and Starý P. 2010. A study of *Praon* Haliday (Hymenoptera, Braconidae: Aphidinae) in southeast Iran with two new records. *Acta Entomol Serbica*, 15: 107-120.

Erdelen CH. 1981. Die Blattlausfauna der Arabischen republic Jemen unter besonderer Berücksichtigung der wirtschaftlich bedeutsamen Arten an Getreide. Dissertation: Universität Bonn, Germany.

Güz N and Kilincer N. 2005. Aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) on weeds from Ankara Turkey. *Phytopara*, 33: 359-366.

Jafari-Ahmabadi N, Karimi J, Awal MM and Rakhshani E. 2011. Morphological and molecular methods in identification of *Aphidius transcaspicus* Telenga (Hym. : Braconidae: Aphidiinae) endoparasitoid of *Hyalopterus* spp. (Hom. : Aphididae) with additional data on Aphidiinae phylogeny. *J Entomol Res Soc*, 13: 91-103.

Kavallieratos NG, Lykouresis DP, Sarlis GP, Stathas GJ, Sanchíz Segovia A and Athanassiou CG. 2001. The Aphidiinae (Hymenoptera: Ichneumonoidea: Braconidae) of Greece. *Phytopara*, 29: 306-340.

Kavallieratos NG, Tomanović Ž, Starý P, Athanassiou CG, Sarlis GP, Petrović O, Niketić M and Veroniki MA. 2004. A survey of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) of Southeastern Europe and their aphid-plant associations. *Appl Ento Zool*, 39: 527-563.

Mescheloff E and Rosen D. 1988a. The genera *Ephedrus* and *Praon*. *Israel J Ento*, 22: 75-100.

Mescheloff E and Rosen D. 1988b. Biosystematic studies on the Aphidiidae of Israel (Hymenoptera: Ichneumonoidea). I. Introduction and key to genera. *Israel J Ento*, 22: 61-74.

Mescheloff E and Rosen D. 1990a. The genera *Adialytus* and *Lysiphlebus*. *Israel J Ento*, 24: 35-50

Mescheloff E and Rosen D. 1990b. The genera *Paeusia*, *Diaearetus*, *Aphidius* and *Diaearetella*. *Israel J Ento*, 24: 51-91.

Mescheloff E and Rosen D. 1993. The genera *Trioxys* and *Binodoxys*. *Israel J Ento*, 27: 31-47.

Mossadegh MS, Starý P and Salehipour H. 2011. Aphid parasitoids in a dry lowland area of Khuzestan, Iran (Hymenoptera, Braconidae, Aphidiinae). *Asian J Biol Sci*, 4: 175-181.

Rakhshani E, Talebi AA, Kavallieratos NG, Rezwani A, Manzari S and Tomanović Ž. 2005. Parasitoid complex (Hymenoptera, Braconidae, Aphidiinae) of *Aphis craccivora* Koch (Hemiptera: Aphidoidea) in Iran. *J Pest Sci*, 78: 193-198.

Rakhshani E, Talebi AA, Manzari S, Rezwani A and Rakhshani H. 2006. An investigation on alfalfa aphids and their parasitoids in different parts of Iran, with key to the parasitoids (Hemiptera: Aphididae). *J Entomol Soc Iran*, 25: 1-14.

Rakhshani E, Talebi AA, Manzari S, Tomanoviæ Ž, Starý P and Rezwani A. 2007a. Preliminary taxonomic study of the genus *Praon* (Hymenoptera: Aphidiinae) and its host associations in Iran. *J Entomol Soc Iran*, 26: 19-34.

Rakhshani E, Talebi AA, Starý P, Tomanoviæ Ž and Manzari S. 2007b. Aphid-parasitoid (Hymenoptera, Braconidae: Aphidiinae) associations on willows and poplars in Iran. *Acta Zool Acad Sci Hungar*, 53: 281-292.

Rakhshani E, Talebi AA, Starý P, Tomanoviæ Ž, Kavallieratos NG and Manzari S. 2008a. A review of *Aphidius* Nees (Hymenoptera: Braconidae: Aphidiinae) in Iran: host associations, distribution and taxonomic notes. *Zootaxa*, 1767: 37-54.

Rakhshani E, Tomanoviæ Ž, Starý P, Talebi AA, Kavallieratos NG, Zamani AA and Stamenkoviæ S. 2008b. Distribution and diversity of wheat aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) in Iran. *European J Ento*, 105: 863-870.

Sanchis A, Michelena JM, Latorre A, Quicke DLJ, Gardenfors U and Belshaw R. 2001. The phylogenetic analysis of variable length sequence data: elongation factor-1a introns in European populations of the parasitoid wasp genus *Paeusia* (Hymenoptera: Braconidae: Aphidiinae). *Mole Ecol Resour*, 18: 1117-1131.

Starý P, Remaudière G, González D and Shahrokh S. 2000. A review and host associations of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) of Iran. *Parasitica*, 56: 15-41.

Starý P. 1988. Aphids, their biology, natural enemies and control (Aphelinidae). In: *World Crop Pests* (Eds: Minks AK and Harrewijn P), Publ. BV, Amsterdam, Elsevier, pp: 185-188.

Starý P. 1979. Aphid parasites (Hymenoptera, Aphidiidae) of the Central Asian area. *Mathem Nat Sci*, 89: 116.

Starý P and Kaddou IK. 1975. Records of aphidophagous insects in Iraq. *Bull Biol Res Cen, Bagdad*, 3: 1-16.

Starý P and Erdelen CH. 1982. Aphid parasitoids (Hym.: Aphidiidae, Aphelinidae) from the Yemen Arab Republic. *Entomophaga*, 27: 105-108.

Starý P, Rakhshani E and Talebi AA. 2005. Parasitoids of aphid pests on conifers and their state as biocontrol agents in the Middle East to Central Asia on the world background (Hym., Braconidae, Aphidiinae; Hom., Aphididae). *Egyptian J Biol Pest Cont*, 15: 147-151.

Talebi AA, Rakhshani E, Fathipour Y, Starý P, Tomanoviæ Ž and Rajahi-Mazdar N. 2009. Aphids and their parasitoids (Hym., Braconidae: Aphidiinae) associated with medicinal plants in Iran. *American Euras J Sust Agri*, 3: 205-219.

Tomanoviæ Ž, Rakhshani E, Starý P, Kavallieratos NG, Stanislavleviæ LŽ, Žikiæ V and Athanassiou CG. 2007. Phylogenetic relationships between the genera *Aphidius* Nees and *Lysaphidus* (Hymenoptera: Braconidae: Aphidiinae) with description of *Aphidius iranicus* sp. nov. *The Canadian Entomol*, 139: 297-307.

Uysal M, Starý P, Sahbaz AM and Özsemerci F. 2004. A review of aphid parasitoids (Hym., Braconidae, Aphidiinae) of Turkey. *Egyptian J Biol Pest Cont*, 14: 355-370.

Contents available at www.iamt.net.in

World Journal of Applied Sciences and Research
(ISSN 2249-4197)

2013, Volume 3, Issue 1, Pages 27-29

Management of African bollworm *Helicoverpa armigera* (Lepidoptera: Noctuidae) in Chickpea crop at State of Eritrea

TUFAIL AHMAD, M. ABID HUSSAIN, EDEN EMHA, TSEHAINESH GEBREHIWET, WINTA GEBREMESKEL and WEGAHTA TESFAHANS

Department of Plant Protection, Hamelmalo Agricultural College, State of Eritrea

Correspondence: tufailrm@gmail.com

Article Information	Abstract
<p>Article history: Received: 27.11.2012 Revised: 25.12.2012 Accepted: 01.01.2013</p>	<p>The field study was conducted in Hamelmalo Agricultural College in State of Eritrea by using pesticides <i>i.e.</i> Cloropyriphos, cypermethrin and neem seed kernel. The findings revealed that all the treatments were significantly reduced the population of African bollworm in chickpea crop. Both chemical insecticides Cypermethrin and Cloropyriphos were more effective in comparison of Neem Seed Kernel. The percent reduction of African bollworm in every plot was considerable and remarkable, documented yield of chickpea 380.36g/plot, 390.26g/plot 297.22g/plot and 283.87g/plot in Cypermethrin, Cloropyriphos, neem seed and control plot, respectively. Neem seed extract was effective than control, even if it was not as much as the chemical insecticides.</p>
<p>Keywords: African bollworm, Cypermethrin, Neem seed, Chloropyrifos</p>	

1. INTRODUCTION:

Chickpea or Bengal gram (*Cicer arietinum*) is the most important pulse crop, in many countries of the world. It probably originated in South Eastern Turkey and adjoining Syria. The cultivation of this crop is about 8.57 million tones in 10.4 million hectares area with a productivity of 824 kg ha⁻¹ throughout the globe. As many as 45 countries, including Eritrea, are growing chickpea and threaten by the attack of *Helicoverpa armigera* (Gowda, 2005). Besides chickpea it is also attack on cotton, maize, pigeonpea and a range of oilseeds, vegetables and fruit crops distributed in Asia, Africa, Australia and the Mediterranean Europe. The worldwide loss in chickpea and pigeonpea alone due to attack of *H. armigera* is recorded as US\$ 927 million and possibly over US\$ 5 billion on other crops (Sharma, 2001).

In state of Eritrea, the economic losses in chickpea is estimated about 50 %, which increase upto 100 % due to favorable conditions for *H. armigera*, particularly in the state where frequent rain and cloudy weather is prevailing during cropping season (Patel, 1979; Shengal and Ujagir, 1990; Sachan and Katti, 1994). About 80 percent Eritrean population are farmer and majority of them producing chickpea and using by different means. The effort has therefore, been made to protect the loss of chickpea from African bollworm by using of chemical and neem based insecticides.

2. MATERIALS AND METHODS:

2.1. Field preparation and raising of chickpea crops:

Field was prepared by using the tractor with harrow and cultivator. Three ploughings were done and each one followed by planking in order to make soil fine. The experiment was laid out in randomized complete block design (RCBD) with three replications. Each treatment was randomly allotted in every block. The unit plot size was 3 x 3 m with a distance of 0.3 m between the plots and 150 cm between the replications. The local variety of chickpea was sown in first fore night of November, 2011.

2.2. Preparation of treatments:

For preparation of treatments cypermethrin 25 EC and Cloropyriphos 25 EC was prepared as 1.5 ml/l. Similarly, for neem seed extract, dried seed plant materials were taken from the laboratory of the Department of Plant Protection, Hamelmalo Agriculture College. The neem seed have peeled from the seed coat and 100 g neem seed was pound gently in mortar with pestle, and thereafter soaked in 200 ml water. The soaked material was squeezed through muslin cloth and mixed with 10 g of soap.

2.3. Statistical analysis:

The data collected were analyzed by the application of software GENESTAT and Sigma plot followed by analysis of variance (ANOVA) and subjected to test of significance by Duncan's multiple range test (DMRT).

3. RESULTS AND DISCUSSION:

Before first application, the larvae of *H. armigera* were counted in every plot of chickpea. The average number of larvae per plant observed as 5.33, 5.21, 4.95 and 5.50 larvae/plant with respect to each treatments (Cloropyriphos, Cypermethrin, Neem seed kernel and Control) (Table 1). The respective population was again counted as 2.08, 2.00, 4.53 and 10.79 larvae/plant after 24hr of spraying. It was recorded that larvae decreased in every plot in comparison of control treatment. Among different treatments, cypermethrin was found as most effective with highest percent reduction of 61.55 (Table 1). The present observations are well supported by Chaudhary and Sachan (1995), they reported cypermethrin was highly effective against pod borer on chickpea.

The observations again recorded with respect to second application of insecticides, since the larval population again reached beyond the economic injury level and counted as 4.59, 4.65, 4.91 and 5.81 with respect to Cloropyriphos, Cypermethrin, Neem

seed kernel and Control plot (Table 1). After second application, the larvae of *H. armigera* reduced significantly in treated plots, where as a high population was documented in the untreated control plots. Here, chloropyriphos found significant to reduce population of *H. armigera* and it was followed by treatment of cypermethrin, whereas, neem seed kernel was inferior after the control (Table 1). However, Bajpai and Sehgal (2000) reported that neem based insecticides like nimbidine and phytoproducts like neem oil and tobacco leaf extract were moderately effective, although it was inferior to HNPV on chickpea. In addition, Rahman (1991) recommended management strategies of *H. armigera* from Bangladesh and advised synthetic insecticides were effective than neem based products, which again provide further strengthen to the present findings.

While documenting yield performance of chickpea with respect to treatments, the result showed a significant difference in average yield (Table 1). The highest yield was recorded by applying chloropyrifos (390.26 g/plot) and lowest was in control (283.87 g/plot). However, the yield loss in chickpea due to pod borer was ranged from 10 to 60 percent in diverse weather conditions from different part of the world (Bhatt and Patel, 2001; Bhushan et al. (2011).

Table 1. Efficacy of chemical and neem insecticides on the population of *Helicoverpa armigera*

Treatments	No of Samples	First application			Second application			Average Yield (g/plot)
		Before Spray	After Spray	% Reduction	Before Spray	After Spray	% Reduction	
Cloropyriphos	10	5.33	2.08b	60.98	4.59	1.36c	70.37	380.36a
Cypermethrin	10	5.21	2.00b	61.55	4.65	2.06bc	55.70	390.26a
Neem seed kernel	10	4.95	4.53b	8.48	4.91	2.403b	51.09	297.22b
Control	10	5.50	10.79a	--	5.81	6.67a	--	283.87b
LSD 5%	--	--	3.80	--	--	0.70	--	72.62
C.V	--	28.62	29.98	--	11.34	6.72	--	10.75

The present finding concluded that every treatment is effective against African pod borer, *H. armigera* and both chemical insecticides i.e. Cloropyriphos, Cypermethrin are more effective than neem seed kernel.

4. ACKNOWLEDGMENTS:

The authors are very thankful to the Dean, Hamelmallo Agricultural College, Eritrea for providing experimental field and other necessary facilities to conduct the present research and also gratified to

staff of department for proving their excellent support.

5. REFERENCES:

Bajpai NK and Sehgal VK. 2000. Efficacy of neem, karanj and tobacco formulations against *Helicoverpa armigera* (Hubner) in chickpea. International Chickpea Pigeonpea Newsletter, 7: 21-23.
 Bhatt NJ and Patel RK. 2001. Screening of chickpea cultivars for their resistance to gram pod

borer, *Helicoverpa armigera*. Indian J Entomo. 63: 277-280.

Bhushan S, Singh RP and Shanker R. 2011. Bioefficacy of neem and Bt against pod borer, *Helicoverpa armigera* in chickpea. J Biopest, 4: 87-89.

Chaudhary RRP and Sachan RB. 1995. Comparative efficacy and economics of some insecticides against gram pod borer, *Heliothis armigera* (Hubner) in chickpea in western plain of Uttar Pradesh. Bhar Krish Anusan Patr, 10: 159-164.

Gowda CLL. 2005. *Helicoverpa* the global problem. In: *Heliothis/Helicoverpa* management, (Eds: Sharma HC). Oxford and IBH Publishing, New Delhi, India, pp: 1-6.

Patel RK. 1979. Unusual outbreak of gram pod borer on gram in Madhya Pradesh. Sci Cult, 45: 335-336.

Rahman MM. 1991. Control measures for important insect pests of major pulses. In: Advance in Pulse Research in Bangladesh. Proceeding of Second National Work-shop on Pulses, Joydebpur, Gazipur, pp: 139-146.

Sachan JN and Katti G. 1994. Integrated Pest Management. Proceeding of International Symposium on Pulses Research, IARI, New Delhi, India, pp: 23-30.

Sharma HC. 2001. Cotton bollworm/legume pod borer, *Helicoverpa armigera* (Hübner) (Noctuidae: Lepidoptera): biology and management. Crop Protec Compen, CAB International, Wallingford, UK, pp: 72.

Shengal VK and Ujagir R. 1990. Effect of synthetic pyrethroids, neem extracts and other insecticides for the control of pod damage by *Helicoverpa armigera* on chick-pea and pod damage-yield relationship at Patancheru in Northern India. Crop Protec. 9: 29-32.

Contents available at www.iamt.net.in

World Journal of Applied Sciences and Research
(ISSN 2249-4197)

2013, Volume 3, Issue 1, Pages 30-34

Assessment of age specific life parameters of whitefly, *Bemisia tabaci* Genn. (Homoptera: Aleyrodidae) on some preferred host plants

SYED KAMRAN AHMAD and PARVEZ QAMAR RIZVI

Department of Plant Protection, F/o Agricultural Sciences, Aligarh Muslim University, Aligarh, India
Correspondence: rizvipq@rediffmail.com

Article Information	Abstract
<p>Article history: Received: 15.11.2012 Revised: 10.12.2012 Accepted: 22.12.2012</p>	<p>Survival and mortality of whitefly (<i>Bemisia tabaci</i> Genn.) has been studied on cotton, black gram and green gram under laboratory condition to find out the host preference. Findings revealed a significant variation in life parameters of whitefly with change in host plants. Although, shortest immature life (14.98 ± 0.82 days) and adult survival (26 days) of whitefly was recorded on cotton as compared green gram and black gram. In addition, cotton plant was recorded as most favourable food of whiteflies with highest adult survival than other plants.</p>
<p>Keywords: Whitefly, life table, cotton, green gram, black gram</p>	

1. INTRODUCTION:

The sweet potato whitefly, *Bemisia tabaci* (Homoptera: Aleyrodidae) was described more than a century ago (Oliveira et al., 2001) and currently is one of 600 most invasive and destructive species on agricultural crops throughout the globe (Lowe et al., 2000; Kontsedalov et al., 2012). Due to small size, its detection on agricultural commodities is difficult, hence an invasion is reported from all the continents except countries having cold climate round the year (Dinsdale et al., 2010; Han et al., 2013). Consisting of over 30 biotypes (Liu et al. 2012; Chowda-Reddy et al., 2012), differing in biological attributes and preferences among each other, generally they feeds on phloem tissues of the host plants. Apart from phloem feeding, they are excreting honeydew and also evolve in vectoring viruses causing diseases in plants (Horowitz et al., 2002; Han et al., 2013). Along with virus transmission, insecticide resistance (Han et al., 2013) has posed a new challenge before the growers. A number of pest control agents viz., entomo-pathogenic fungi, natural enemies and pesticides, have been employed to manage this viral vector.

Any change in population structure or unexpected dynamics may affect the efficacy of above pest control methods, hence a thorough understanding of survival and mortality dynamics of whitefly, *B. tabaci* is required (Han et al., 2013). Therefore, an objective of this study was to investigate the biology, survival and mortality of whitefly affected by different host plants.

2. MATERIALS AND METHODS:

2.1. Culture of whiteflies:

Seeds of black gram (*Vigna mungo* L.), green gram (*V. radiata* L.) and cotton (*Gossypium hirsutum* L.) was sown in thermo-coal pots (sized 9 x 6 x 7 cm in top, bottom diameter and height) under laboratory conditions (temperature $26 \pm 3^\circ\text{C}$, RH: $75 \pm 5\%$ and photo phase: 14hr) at Department of Protection, Faculty of Agricultural Sciences of Aligarh Muslim University, India. Fresh pupae of whitefly (*Bemisia tabaci* Genn.) were collected from the experimental field of the department, to obtain newly emerged adults. The culture was maintained up to four generations on brinjal (*Solanum melongena* L.) plant to get a laboratory adopted strain and F-5 generation was used in present investigation. To obtain fresh eggs, pairs of adult whitefly were released in confined plastic vials (4.20 x 2.00 x 1.70 x 2.20 cm in length, upper diameter, lower diameter and cap diameter) on under surface of leaves. These vials were provided with two square shape ventilation windows at either ventral sides, one at bottom and second one at neck opposite to that of bottom and a fine meshed cloth was pasted as screen on the windows (Fig. 1). After 24 hours of confined, exposure of male and female whitefly pairs, two eggs from each exposed leaf were selected and marked with black permanent and nontoxic marker and such leaves containing those of eggs were tagged at petiole region to facilitate the infestation identity, while rest of the eggs were get discarded. The whole amount of such tagged plants used under the study

were screened with fine meshed white cotton cloth to avoid further infestation of whitefly, mites or ants if there were any. This ensured that every leaf chosen remained with a specific number of eggs, all of which had been marked. A total of 100 plants were selected to give a cohort of 200 eggs and rest of the eggs and nymphs were discarded. Settled first-instar nymphs were identified and marked again by making a circle around. These first instars were identified by their translucent colour, small size, and characteristic ovoid shape. Marked nymphs were revisited after 1 hr to ensure that they had settled. Any nymph that had crawled out of the circle was replaced by marking new one on another leaf of a new plant. All cohorts in each plot were established on the same day, and were marked between 07:00 and 10:00 hours of the same day. When insect completed its immature life, the red eyed pupae/pseudo-pupae were identified and caged in vials (Fig. 1). Adult longevity, survival and mortality were observed subsequently. This study will provide essential gap filling information for devising effective management strategies for whitefly by providing information in areas having in vogue cultivation of above mentioned cotton and bean crops.

2.2. Data Analysis:

The below given assumptions were used for the documentation of age specific life-table.

x = age of the insect in days

I_x = number of individuals that survived at the beginning of each age interval x

d_x = number of individuals that died during the age interval x

$100q_x$ = per cent mortality, computed through the following equation:

$$100q_x = [d_x / I_x] \times 100$$

e_x = expectation of life or mean life remaining for individuals of age x

Life expectation was calculated by using the equation

$$e_x = T_x / I_x$$

To obtain e_x , two other parameters L_x and T_x were also computed as below

L_x = the number of individuals alive between age x and $x+1$ and calculated by the equation:

$$L_x = I_x + 1 (x+1)/2$$

T_x = the total number of individuals of x age units beyond the age x and obtained by the equation:

$$T_x = I_x + (I_x + 1) + (I_x + 2) \dots + I_w$$

Where, I_w = the last age interval

Fig. 1. Exposure of whiteflies through plastic vial

3. RESULTS:

All the host plants used to expose the whitefly responded varyingly (df-3, 11; $p \leq 0.05$) (Table 1). The biological parameters of whitefly reared on cotton were significantly different (df-2, 11; $p \leq 0.05$) from bean reared individuals whereas, the population fed on black gram and green gram did not exhibited a significant difference among each other (df-2, 11; $p \leq 0.05$) except the longevity of adult females. The immature life of *Bemisia* ranged from 14.98 ± 0.82 days on cotton to 20.51 ± 1.00 days on green gram. Females flies reared on all the host plants were long surviving than males (df-2, 11; $p \leq 0.05$) while the performance pattern was alike the immature stages. The maximum duration of adult male and female longevity (14.58 ± 0.40 and 18.74 ± 0.99 days) was observed on green gram with shortest respective duration (12.44 ± 0.84 and 15.58 ± 0.84 days) on cotton. The hatching took minimum duration (3.22 ± 0.38 days) on cotton and maximum (4.95 ± 0.20 days) on black gram followed by (4.92 ± 0.18 days) green gram (Table 1). The longest pupal duration (4.22 ± 0.22 days) was also recorded on green gram and the lowest on (3.74 ± 0.46 days) cotton.

Table 1. Life parameters of whitefly (*B. tabaci*, Genn.) on different host plants

Host	Egg	I instar	II instar	III instar	Pupa	Total	Male	Female
Black gram	4.95 ± 0.20^b	3.24 ± 0.11^b	3.68 ± 0.18^b	4.18 ± 0.21^b	4.22 ± 0.22^b	20.27 ± 1.22^b	14.45 ± 0.78^b	18.44 ± 0.78^b
Green gram	4.92 ± 0.18^b	3.26 ± 0.14^b	3.72 ± 0.13^b	4.45 ± 0.27^b	4.16 ± 0.22^b	20.51 ± 1.00^b	14.58 ± 0.40^b	18.74 ± 0.99^c
Cotton	3.22 ± 0.38^a	2.48 ± 0.29^a	2.36 ± 0.32^a	3.18 ± 0.24^a	3.74 ± 0.46^a	14.98 ± 0.82^a	12.44 ± 0.84^a	15.58 ± 0.84^a

The age specific survival was of stair step like in pattern documenting shortest span (26 days) on cotton and the longest on green gram (Fig. 1). On the other hand, mortality of whitefly did not follow a regular/definite pattern on all the host plants. Maximum mortality of whitefly on black gram was

recorded at first instar nymphal stage followed by pupal stage, while on green gram and cotton the corresponding peaks were observed at pupal stage of life. Overall highest survival percentage at all the immature stages was observed on cotton as compared to green gram and black gram (Fig. 2).

Fig. 1. Age specific survival and mortality of whitefly (*B. tabaci* Genn.) on different host plants

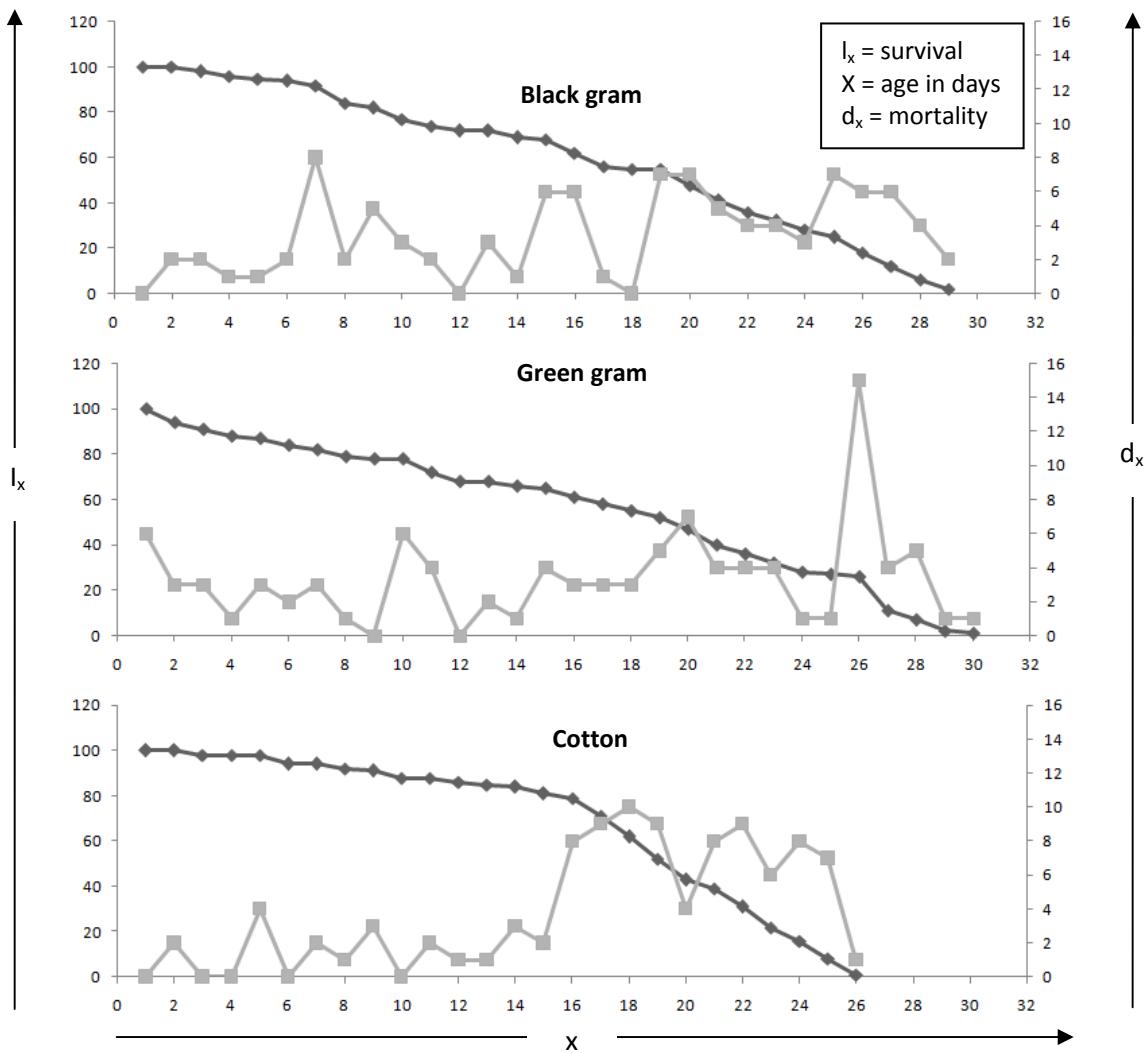
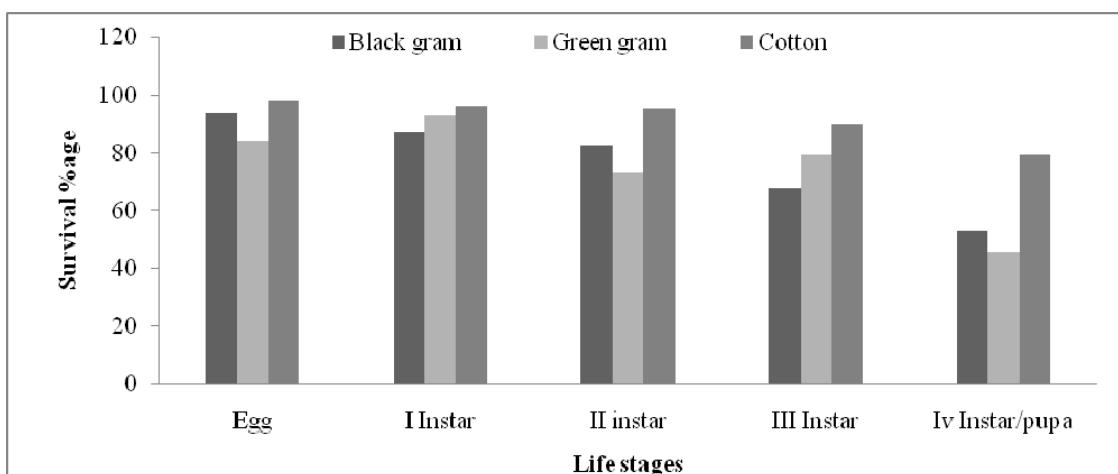



Fig. 2. Age specific survival (in percent) of whitefly (*B. tabaci*, Genn.) on different host plant

4. DISCUSSION:

The findings reveal that egg hatchability and nymphal survival was higher on cotton as compared to bean crops and the results are justified with the research work of Abdel Baky et al. (2004). The literature on biology and ecology from recent past shows that the development of immature *Bemisia tabaci* is dependent on type of whitefly population or biotype (Muniz and Nombela, 1997; Bonato et al., 2007) or host plants (Zalom et al., 1995; Tsai and Wang, 1996; Muniz and Nombela, 1997; Nava Camberos et al., 2001; Lin and Ren, 2005; Bonato et al., 2007).

The result shows that whitefly documented short life and high percentage of survival on cotton as compared to green gram and black gram and these outcomes has a great proximity with the findings of Abdel Baky et al. (2004). According to Van Lenteren and Noldus (1990) the host plant preference in case of whitefly (*Trialeurodes vaporariorum* West.) directly related to biological performance on the plant. Elevated rate of reproduction, low mortality rate and shorter development time of insects on a particular host has pointed toward greater suitability of a host plant (Costa et al., 1991a & b; Awmack and Leather, 2002; Hasan and Ansari, 2011).

In conclusion, whitefly (*B. tabaci* Genn.) has shown a greater host preference for cotton as compared to green gram and black gram by documenting a short life and a comparative lower mortality rate.

5. ACKNOWLEDGEMENTS:

The authors are highly grateful to University Grants commission, New Delhi for funding that helped to carry this research work.

6. REFERENCES:

Abdel Baky, NF, El Naga AMA, El Nagar ME and Heikal GAM. 2004. Population density and host preference of the silver leaf whitefly, *Bemisia argentifolii* Perring and Bellows, among three important summer crops. Egyptian J Biol Pest Cont, 14: 251-258.

Awmack CS and Leather SR. 2002. Host plant quality and fecundity in herbivorous insects. Ann Rev Ento, 47: 817-844.

Bonato O, Lurette A, Vidal C and Fargues J. 2007. Modelling temperature dependant bionomics of *Bemisia tabaci* (Q-biotype). Physio Ento, 32: 50-55.

Chowda-Reddy RV, Kirankumar M, Seal SE, Muniyappa V, Valand GB, Govindappa MR and Colvin J. 2012. *Bemisia tabaci* phylogenetic groups in India and the relative transmission efficacy of tomato leaf curl Bangalore virus by an indigenous and an exotic population. J Integ Agri, 11: 235-248.

Costa HS, Brown JK and Byrne DN. 1991a. Host plant selection by the whitefly, *Bemisia tabaci* (Gennadius), (Homoptera: Aleyrodidae) under greenhouse conditions. J Appl Ento, 112: 146-152.

Costa HS, Brown JK and Byrne DN. 1991b. Life history traits of whitefly, *Bemisia tabaci* (Homoptera: Aleyrodidae) on six virus-infected or healthy plant species. Environ Ento, 20: 1102-1107.

Dinsdale AB, Cook L, Riginos C, Buckley YM and De Barro P. 2010. Refined global analysis of *Bemisia tabaci* (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase I to identify species level genetic boundaries. Ann Entomol Soc America, 103: 196-208.

Han EJ, Choi BR and Lee JH. 2013. Temperature-dependent development models of *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae) Q biotype on three host plants. J Asia-Pac Ento, 16: 5-10.

Hasan F and Ansari MS. 2011. Population growth of *Pieris brassicae* (L.) (Lepidoptera: Pieridae) on different cole crops under laboratory conditions. J Pest Sci, 84: 179-186.

Horowitz AR, Kontsedalov S, Denholm I and Ishaaya I. 2002. Dynamics of insecticide resistance in *Bemisia tabaci*: a case study with the insect growth regulator pyriproxyfen. Pest Manag Sci, 58: 1096-1100.

Kontsedalov S, Abu-Moch F, Lebedev G, Czosnek H, Horowitz AR and Murad GM. 2012. *Bemisia tabaci* biotype dynamics and resistance to insecticides in Israel during the years 2008-2010. J Integ Agri, 11: 312-320.

Lin L and Ren S. 2005. Development and reproduction of 'B' biotype *Bemisia tabaci* (Gennadius) (Homoptera: Aleyrodidae) on four ornamentals. Insect Sci, 12: 137-142.

Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM and Wan FH. 2007. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Sci, 318: 1769-1772.

Lowe S, Browne M, Boudjelas S and De Poorter M. 2000. 100 of the World's worst invasive alien species. A selection from the global Invasive species database, IUCN/SSG, pp: 6.

Muniz M and Nombela G. 1997. Development, oviposition and female longevity of two biotypes of *Bemisia tabaci* (Homoptera:

Aleyrodidae) on three varieties of *Capsicum annuum* L. IOBC/ WPRS Bull, 20: 143-146.

Nava-Camberos U, Riley DG and Harris MK. 2001. Temperature and host plant effects on development, survival, and fecundity of *Bemisia argentifolii* (Homoptera: Aleyrodidae). Environ Ento, 30: 55-63.

Oliviera MRV, Henneberry TJ and Anderson P. 2001. History, current status, and collaborative research projects for *Bemisia tabaci*. Crop Protec, 20: 709-723.

Tsai JH and Wang K. 1996. Development and reproduction of *Bemisia argentifolii* on five host plants. Environ Ento, 25: 810-816.

Van Lenteren JC and Noldus LPJJ. 1990. Behavioral and ecological aspects of whitefly-plant relationship. In: Whiteflies: Bionomics, pest and management. (Eds: Gerling D), Intercept, UK, pp: 47-89.

Zalom FG, Castane C and Gabarra R. 1995. Selection of some winter-spring vegetable crop hosts by *Bemisia tabaci* (Homoptera: Aleyrodidae). J Econ Ento, 88: 70-76.

Contents available at www.iamt.net.in

World Journal of Applied Sciences and Research
(ISSN 2249-4197)

2013, Volume 3, Issue 1, Pages 35-38

Preliminary checklist of grasshoppers and locust fauna (Orthoptera: Acrididae) of Bihar, India

NAYEEM M.R., M.K. USMANI and M.H. AKHTAR

Department of Zoology, Aligarh Muslim University, Aligarh, India

Correspondence: rashidnayeem48@gmail.com

Article Information	Abstract
<p>Article history: Received: 22.09.2012 Revised: 25.11.2012 Accepted: 10.12.2012</p>	<p>Grasshoppers and locusts are the members of family Acrididae, superfamily Acridoidea, sub-order Caelifera and order Orthoptera. They have been accredited as pests of field, pasture and forest as well. The present study focuses on the distribution of the concerned insect pests in Bihar. Survey has been conducted in thirty six districts of Bihar during the year 2009 and 2010, and thirty seven species of grasshoppers and locusts representing twenty nine genera, four tribes, twelve subfamilies and three families have been collected during investigations.</p>
<p>Keywords: Grasshopper, Bihar, biodiversity, locust</p>	

1. INTRODUCTION:

Acridoids have long been noted as pests of agriculture as well as forests. Hoppers and adults are equally damaging and are reputed defoliators. Defoliation being the most common mode of damage but some of the species, in case of severe outbreaks, even finishes up the ears of crops and comparatively softer stem portions. Bihar is one of the most important Eastern States of India and has notified forest area of 6,764.14 km² and is a vast stretch of fertile plain that consists of a thick alluvial mantle of drift origin overlying in most part. The natural vegetation of Bihar is moist deciduous forests, mostly found in northern and southern parts of the state. The average rainfall of Bihar is around 120 cm.

The work on collection of insect fauna was started in the period of British India (Kirby, 1914). The literature shows that Indian grasshoppers always have importance due to their outbreaks at different places (Bhowmik, 1985). Later on, study was conducted on collection of acridoid fauna from different part of India *i.e.* Uttarakhand (Hazra et al., 1993), Kashmir (Reshi et al., 2008), Himachal (Shishodia and Gupta, 2009), Jharkhand (Nayeem and Usmani, 2012a), Uttar Pradesh (Akhtar et al., 2012; Nayeem and Usmani, 2012b) etc. Such work in Bihar was neglected even though the state reserves rich agricultural potential and thereby the Superfamily Acridoidea of this region needs to be worked out. It is because of this reason that the entire state was surveyed and the result is the first systematic collection from the state.

2. MATERIALS AND METHODS:

2.1. Collection of Acridoids:

The acridoids (grasshoppers and locusts) were collected from various agricultural and pasture areas along with forest habitat of different districts of Bihar in the year 2009 and 2010. They were caught by ordinary aerial insect net and also by hands. The net was used by sweeping on grasses, bushes and other vegetables for collection of acridoids individually. The collected specimens were killed in cyanide bottles and brought to the laboratory for further investigation.

2.2. Stretching of Acridoids:

Dry mounts were also prepared for better understanding of certain characters like size, colour, texture etc. For this purpose, the specimens were first relaxed, stretched, and later they were pinned and labelled properly. Permanent collections of pinned specimens were kept in collection boxes.

2.3. Genitalic study of Acridoids:

The genitalia of grasshoppers and locusts remove from the body and passed through graded series of alcohol for preparation of permanent slides. Later on, slides were examined under the stereoscopic microscope in order to make a detailed study on the genitalic structures of acridoids. Drawings were initially made with the help of camera lucida and details were filled in by conventional microscope examination.

3. RESULTS AND DISCUSSION:

An extensive survey was conducted in different habitats of state Bihar. A total of two hundred seventy seven specimens of grasshoppers

and locusts were collected, which sorted out to yield of thirty seven species, representing twenty nine genera, four tribes, twelve subfamilies and three families represented in table 1.

Table 1. Systematic account of grasshoppers and locusts collected from Bihar, India

S.No.	Name of Species, tribe, family	Specimen collected	Collection place in Bihar
Super family: Acridoidea			
Family: Pyrgomorphidae			
Tribe: Atractomorphini			
1.	<i>Atractomorpha psittacena</i>	2♂, 2♀	Saran Chhapra, Purba Champaran, Motihari
2.	<i>Atractomorpha sinensis</i>	6♀	Gopalganj, Vaishali, Hajipur, Samastipur, Supaul
Tribe Poikilocerini			
3.	<i>Poekilocerus pictus</i>	1♀	Banka
Tribe Chrotogonini			
4.	<i>Chrotogonus trachypterus</i>	6♀	Khagaria, Gaya, Katihar, Samastipur, Paschim Champaran, Bettiah
Family Catantopidae			
Subfamily Oxyinae			
5.	<i>Oxya japonica japonica</i>	1♂, 30♀	Rohtas, Sarsaram, Aurangabad, Gaya, Araria
6.	<i>Oxya hyla hyla</i>	10♀	Gopalganj, Banka, Araria, Rohtas,
7.	<i>Oxya fuscovittata</i>	1♀	Araria
8.	<i>Oxya velox</i>	3♀	Bhagalpur, Purba Champaran, Motihari
Subfamily Hemiacridinae			
9.	<i>Hieroglyphus banian</i>	1♀	Jehanabad
10.	<i>Spathosternum prasiniferum prasiniferum</i>	7♂, 23♀	Sitamarhi, Nalanda, Bihar Sharif, Muzaffarpur, Darbhanga, Banka, Khagaria, Gaya, Patna, Buxar, Vaishali, Hajipur, Samastipur, Pascim Champara, Bettiah, Supaul, Begusarai, Luckeesarai
Subfamily Euprepocnemidinae			
11.	<i>Euprepocnemis alacris alacris</i>	2♀	Jamui, Jehanabad
Subfamily Calliptaminae			
12.	<i>Acorypha glaucopsis</i>	6♂, 4♀	Rohtas, Sasaram
Subfamily Romaleinae			
13.	<i>Teratodes monticollis</i>	1♀	Nalanda, Rajgir
Subfamily Catantopinae			
14.	<i>Diabolocatantops pinguis</i>	1♂	Bhagalpur, Gaya, Rohtas, Sasaram, Supaul
15.	<i>Xenocatantops karnyi</i>	1♀	Katihar
Subfamily Cyrtacanthacridinae			
16.	<i>Schistocerca gregaria gregaria</i>	2♂, 2♀	Jehanabad, Araria
17.	<i>Chondacris rosea</i>	1♂, 2♀	Araria
18.	<i>Cyrtacanthacris tatarica tatarica</i>	2♂, 2♀	Araria
Subfamily Tropidopolinae			
19.	<i>Tristria pulvinata</i>	1♂, 8♀	Rohtas, Sasaram, Madhubani, Kishanganj
20.	<i>Tropidopola longicornis</i>	1♂	Siwan
Family Acrididae			
Subfamily Acridinae			

21.	<i>Acrida exaltata</i>	14♂, 19♀	Katihar, Purnia, Saharsa, Muzaffarpur, Siwan, Banka, Pascim Champaran, Bettiah, Supaul, Buxar, Patna, Samastipur, Begusarai, Bhojpur, Ara, Madhepura
22.	<i>Acrida gigantea</i>	9♂, 9♀	Siwan, Darbhanga, Nalanda, Rajgir, Saharsa, Gaya, Kaimur, Bhabua, Gopalganj, Muzaffarpur, Rohtas, Sasaram, Katihar, Patna, Begusarai, Saran, Chhapra
23.	<i>Phlaeoba infumata</i>	1♂, 1♀	Kaimur, Bhabua, Jamui
24.	<i>Phlaeoba panteli</i>	1♀	Munger
Subfamily Oedipodinae			
25.	<i>Trilophidia annulata</i>	2♀	Gaya
26.	<i>Aiolopus simulatrix</i>	18♂, 19♀	Kaimur, Bhabua, Gaya, Purnia, Jamui, Munger, Khagaria, Bhojpur, Ara, Saran, Chhapra, Kishanganj
27.	<i>Aiolopus thalassinus thalassinus</i>	3♂ 1♀	Purba Champaran, Motihari, Saran, Chhapra
28.	<i>Aiolopus thalassinus tumulus</i>	3♂, 9♀	Jamui, Khagaria, Munger, Rohtas, Sasaram, Bhojpur, Ara
29.	<i>Chloebara grossa</i>	1♂, 1♀	Rohtas, Sasaram
30.	<i>Acrotylus insubricus</i>	1♀	Sitamarhi
31.	<i>Oedaleus senegalensis</i>	1♂, 1♀	Nawada
32.	<i>Oedipoda miniata miniata</i>	5♀	Aurangabad, Nawada, Jamui
33.	<i>Locusta migratoria</i>	2♂, 4♀	Kaimur, Bhabua, Araria, Purnia
Subfamily Truxalinae			
34.	<i>Truxalis nasuta</i>	1♀	Jamui
Subfamily Gomphocerinae			
35.	<i>Chorthippus indus</i>	1♂	Madhubani
36.	<i>Leva indica</i>	1♀	Saharsa
37.	<i>Leionotacris bolivari</i>	1♀	Aurangabad

Grasshoppers are annual species having biting chewing type of mouthparts and are of great economic importance, because they constitute an important group of pests and pose a constant threat to cereal, pulses, vegetable crops, orchards, grassland and forest plantations all over the world (Usmani, 2006). Similar work on the collection of grasshoppers and locust fauna from different part of India was reported by Hazra et al. (1993), Reshi et al. (2008), Shishodia and Gupta (2009), Nayeem and Usmani (2012a & b), Akhtar et al. (2012) and Usmani et al. (2012), which provide strengthen to the present findings. Although Bihar is dominating in agriculture and naturally occurring forest, which provides food and balance to the ecosystem, hence, it is a need to control these grasshoppers and locust through environmentally safe methods to increase the yield and balancing ecological processes across the landscapes of Bihar.

4. ACKNOWLEDGMENTS:

We extend our gratitude to Department of Science and Technology, New Delhi for providing financial assistance to carry out present research work and also thankful to Prof. Irfan Ahmad,

Chairman, Department of Zoology, Aligarh Muslim University, Aligarh for providing necessary facilities.

5. REFERENCES:

Akhtar MH, Usmani MK and Nayeem MR and Kumar H. 2012. Species Diversity and abundance of Grasshopper fauna (Orthoptera) in rice ecosystem. Ann Biol Res, 3: 2190-2193.

Bhowmik HK. 1985. Outline of distribution with an index- Catalogue of Indian grasshoppers (Orth.: Acrididae). Part I. Acridinae, Truxalinae, Gomphocerinae and Oedipodinae. Rec Zool Surv India Misc Publ Occ Pap, 78: 1-51.

Hazra AK, Tandon SK, Shishodia MS, Dey A and Mandal SK. 1993. Insecta: Orthoptera: Acridoidea. In Fauna of West Bengal, State Fauna Series 3, Part 4: 287-354.

Kirby WF. 1914. Orthoptera (Acrididae). In: the fauna of British India, including Ceylon and Burma, pp: 276.

Nayeem MR and Usmani MK. 2012a. Taxonomy and field observations of grasshopper and locust fauna (Orthoptera: Acridoidea) of Jharkhand, India. Munis Entomol Zool, 7: 391-417.

Nayeem MR and Usmani MK 2012b. Grasshopper and locust diversity in leguminous crops of Eastern Uttar Pradesh, India. *Proc Zool Soc India*, 11: 107-111.

Reshi SA, Azim MN and Usmani MK. 2008. A checklist of short horned grasshoppers (Orthoptera: Acridoidea) from Kashmir, India. *Biosystematica*, 2: 25-35.

Shishodia MS and Gupta S. 2009. Checklist of orthoptera (Insecta) of Himachal Pradesh, India. *J Threat Taxa*, 1: 569-572.

Usmani MK. 2006. Taxonomic significance of female subgenital plate in some Indian grasshoppers (Orthoptera : Acridoidea). *Sebha Univ J*, 4: 51-66.

Usmani MK, Akhtar MH and Nayeem MR. 2012. Diversity and taxonomic studies of acridoid pests (Acridoidea: Orthoptera) of pulses from Uttar Pradesh, India. *Munis Entomol Zool*, 7: 837-846.

Studies on population dynamics of aphids and their predators on sugarcane at district Shahjahanpur, U.P. India

IRAM KHAN and JAMIL AHMAD**Department of Zoology, G.F. College, Shahjahanpur, U.P., India**Correspondence: jamilahmadgfc@gmail.com

Article Information	Abstract
<p>Article history: Received: 22.07.2012 Revised: 08.09.2012 Accepted: 26.09.2012</p>	<p>To study the population dynamics of aphids and their predators, an extensive survey has been conducted in the farmer's field of sugarcane at district Shahjahanpur on monthly basis during 2008-09 and 2009-10. The findings showed that two aphid species <i>i.e.</i>, <i>Sipha flava</i> and <i>Ceratovacuna lanigera</i> were observed to attack on sugarcane; and their predators including ladybird beetles (<i>C. septempunctata</i> and <i>M. sexmaculatus</i>), lace wing (<i>Crysoperla carnea</i>) and hover fly (<i>Ischiodon scutellaris</i>) were also found to be associated with aphid colonies. Both aphid and their predators were remained active in the winter (from November to February). The higher infestation of <i>S. flava</i> (15.67 % and 230.00 aphids/plant) and <i>C. lanigera</i> (16.67 % and 271.33 aphids/plant) was recorded in the month of January. Similarly, predators attained highest population of 18.00 and 16.67 beetles/plant for <i>C. septempunctata</i>, 19.33 and 17.33 beetles/plant for <i>M. sexmaculatus</i>, 18.00 and 16.67 larvae/plant for <i>C. carnea</i> and 15.67 and 14.33 maggot/plant <i>I. scutellaris</i> on <i>S. flava</i> and <i>C. lanigera</i>, respectively. Among different predator species, <i>C. septempunctata</i> was recorded most efficient than others and their population also fluctuated in accordance to aphid activity.</p>
<p>Keywords: Aphid, hoverfly, ladybird beetle, lacewing, sugar</p>	

1. INTRODUCTION:

Sugarcane belongs to the tall grasses family Poaceae and genus *Saccharum*. There are five recognized species in this genus *viz.*, *Saccharum officinarum*, *Saccharum barberi*, *Saccharum sinensis*, *Saccharum robustum* and *Saccharum spontaneum*, and the farmers are cultivated first three species more preferably and latter two species are wild ones (Jakson, 2005). *Saccharum officinarum* is a main source of sugar in India and holds a prominent position as a cash crop (Anonymous, 2005). In India, Uttar Pradesh is a major sugarcane producing state, accounting about 79.0 % of sugarcane area of sub tropical region (Singh et al., 2005). Uttar Pradesh itself contributes about 55.6 % of total sugarcane crop in the country. Besides this, other sugarcane growing states are Punjab, Bihar, Maharashtra, Chennai and Andhra Pradesh and their consecutive contribution are 8.9, 8.3, 5.3, 3.3 and 3.1% of total national yield, respectively. In the subtropical regions of India, Uttar Pradesh ranks first with average productivity of about 110.00 tones/ hectare (Anonymous, 2005).

Various factors are responsible for low yield of sugarcane in India *viz.*, extreme hot in summer, excessive rainfall in rainy season, cold and frosty

weather in winter. In spite of these factors, the sugarcane crop is also attacked by about 200 species of insect pests at various developmental stages (Cheng et al., 1998). Among them, aphids are most important pest causing heavy losses to the quality as well as quantity of the crop by sucking sap from leaf and stem, and also facilitating secondary infection of virus and fungi. In biosphere, to check the population of aphids, some predators also remain associated with this crop. They are beneficial insects and feed on the nymphs as well as adult of aphids. Considering the importance of aphids on sugarcane, present study has been designed on the population dynamics of aphids and their predators at district Shahjahanpur, Uttar Pradesh, India.

2. MATERIALS AND METHODS:

To collect the aphids and their predators, an extensive survey has been conducted in the farmer's field of sugarcane at district Shahjahanpur on the basis of one month interval during cropping season 2008-09 and 2009-10. A total of one hundred canes (each replicated thrice) have been studied for the experimentation. The sugarcane plants have critically been examined with hand lens for collection of aphids and their predators and specimen (aphid and

predators) collected from the field were subjected for identifications as per suggestions of Nuessly and Hentz (2002), Hentz and Nuessly (2004), Patil and Nerkar (2004) and Patil et al. (2005).

3. RESULTS:

The observations revealed that aphid species collected from sugarcane were identified as sugarcane yellow aphid, *Siphanta flava* and sugarcane woolly aphid, *Ceratovacuna lanigera*. However, the predators collected were ladybird beetles (*C. septempunctata* and *M. sexmaculatus*), lace wing (*Crysoperla carnea*) and hover fly (*Ischiodon scutellaris*). The population dynamics showed that both aphid species remained active from the month of November to February on sugarcane at district Shahjahanpur. The higher infestation of *S. flava*

(15.67 %) was recorded in the month of January and similar observations were with *C. lanigera* (16.67 %) (Table 1 & 2). On the other hand, aphid (*S. flava* and *C. lanigera*) attained their maximum population of 230.00 aphids/plant and 271.33 aphids/plant in the month of January, respectively (Table 1 & 2).

The data recorded with respect to predators showed that highest population of *C. septempunctata* and *M. sexmaculatus* on *S. flava* and *C. lanigera* were recorded as 18.00 and 16.67 beetles/plant, and 19.33 and 17.33 beetles/plant in the month of January at district Shahjahanpur, respectively (Table 1 & 2). Similarly, the population of *C. carnea* and *I. scutellaris* were recorded maximum of 18.00 and 16.67 larvae/plant and 15.67 and 14.33 maggot/plant on *S. flava* and *C. Lanigera* on infected sugarcane plants, respectively (Table 1 and 2).

Table 1. Population dynamics of sugarcane yellow aphid, *Siphanta flava* and their predators on sugarcane at Shahjahanpur

Months	% plant Infestation	Population of <i>S. flava</i> *	Population of <i>C. septempunctata</i> *	Population of <i>M. sexmaculatus</i> *	Population of <i>C. carnea</i> *	Population of <i>I. scutellaris</i> *
March	0.00	0.00	0.00	0.00	0.00	0.00
April	0.00	0.00	0.00	0.00	0.00	0.00
May	0.00	0.00	0.00	0.00	0.00	0.00
June	0.00	0.00	0.00	0.00	0.00	0.00
July	0.00	0.00	0.00	0.00	0.00	0.00
August	0.00	0.00	0.00	0.00	0.00	0.00
September	0.00	0.00	0.00	0.00	0.00	0.00
October	0.00	0.00	0.00	0.00	0.00	0.00
November	3.33	56.67	3.67	3.00	2.67	2.67
December	7.33	121.33	8.00	7.00	6.67	6.33
January	15.67	230.00	18.00	16.67	15.33	13.00
February	9.33	97.33	8.67	8.33	7.67	7.00

Data is pooled analysis of cropping year 2008-09 and 2009-10

Sample size = 100 sugarcane plants

* = Values given in table are plant⁻¹

It was interestingly noticed that among different aphid predators, *C. septempunctata* showed highest potential to feed on both aphid species and it was followed by *M. sexmaculatus*, *C. carnea* and *I. scutellaris* as recorded corresponding minimum values (Table 1 & 2).

4. DISCUSSION:

In the present study, aphids remained active from the month of November to February and highest population of both aphid species was documented in the month of January. The workers of aphids have always recorded its devastating activity

in heavy winter on sugarcane and other agriculturally important crops (Nuessly and Hentz, 2002; Hentz and Nuessly, 2004; Patil and Nerkar, 2004; Patil et al., 2005; Ali et al., 2010 and Hadley, 2012). Among different predator species, *C. septempunctata*, *M. sexmaculatus*, *C. carnea* and *I. scutellaris* were also observed to feed on both aphid species and their population also synchronized with the activity of aphids. Similar observations were also recorded by Tripathi (1995), Hodek and Honek (1996), Dixon (1998), Hall (2001), Rabindra et al. (2002), Mote and Galande (2004), Chakravarthy and Gowda (2005) and Easterbrook et al. (2006) and giving further strengthen to the present findings.

Table 2. Population dynamics of sugarcane woolly aphid, *Ceratovacuna lanigera* and their predators on sugarcane at Shahjahanpur

Months	% plant Infestation	Population of <i>C. lanigera</i> *	Population of <i>C. septempunctata</i> *	Population of <i>M. sexmaculatus</i> *	Population of <i>C. carnea</i> *	Population of <i>I. scutellaris</i> *
March	0.00	0.00	0.00	0.00	0.00	0.00
April	0.00	0.00	0.00	0.00	0.00	0.00
May	0.00	0.00	0.00	0.00	0.00	0.00
June	0.00	0.00	0.00	0.00	0.00	0.00
July	0.00	0.00	0.00	0.00	0.00	0.00
August	0.00	0.00	0.00	0.00	0.00	0.00
September	0.00	0.00	0.00	0.00	0.00	0.00
October	0.00	0.00	0.00	0.00	0.00	0.00
November	3.67	69.00	4.00	4.00	3.67	3.33
December	7.33	147.00	8.67	8.00	7.67	7.33
January	16.67	271.33	19.33	17.33	15.67	14.33
February	9.67	115.67	10.33	9.67	9.00	8.33

Data is pooled analysis of cropping year 2008-09 and 2009-10

Sample size = 100 sugarcane plants

* = Values given in table are plant⁻¹

In conclusion, the findings accomplished that aphids are most vigorous pests of sugarcane and cause serious economic losses in heavy winter (January), and *C. septempunctata* recorded as most active predator followed by *M. sexmaculatus*, *C. carnea* and *I. scutellaris* on aphids, however, their population also fluctuated with inhabitant to aphids.

5. ACKNOWLEDGEMENTS:

Authors are highly thankful to Dr. P.K. Singh, Principal and Dr. R.C. Gupta, Head, Department of Zoology, Hindu College, Moradabad for providing the laboratory and library facilities.

6. REFERENCES:

Anonymous. 2005. 94 years of Sugarcane Research in U.P. Uttar Pradesh Council of Sugarcane Research, Shahjahanpur, India, pp: 93-95.

Ali A, Rizvi PQ and Khan FR. 2010. Bio-efficacy of some plant leaf extracts against mustard aphid, *Lipaphis erysimi* Kalt. on Indian mustard, *Brassica juncea*. J Pl Protec Res, 50(2): 130-132.

Chakravarthy AK and Gowda MKN. 2005. Validation of farmer's practices for suppression of sugarcane woolly aphid, *Ceratovacuna lanigera* Zehntner (Homoptera: Aphididae) in South Karnataka. Insect Environ, 10: 189-191.

Cheng WY, Chen SM and Wang ZT. 1998. Sugarcane borer larvae and pupae collected from damaged internodes of spring cane. Report of the Taiwan Sugar Research Institute, China, 162: 1-14.

Dixon AFG. 1998. Aphid Ecology. Chapman and Hall, London, pp: 38.

Easterbrook MA, Fitzgerald JD and Solomon MG. 2006. Suppression of aphids on strawberry by augmentative releases of larvae of the lacewing *Chrysoperla carnea* (Stephens). Biocont Sci Tech, 16: 893-900.

Hadley D. 2012. Where do insects go in winter? <http://insects.about.com/od/adaptations/p/wintersurvival.htm>.

Hall DG. 2001. Notes on the yellow sugarcane aphid *Sipha flava* (Homoptera: Aphididae) and the lady beetle *Diomus terminatus* (Coleoptera: Coccinellidae) in Florida. J American Soc Sug Tech, 21: 21-29.

Hentz MG and Nuessly GS. 2004. Development, longevity, and fecundity of *Sipha flava* (Homoptera: aphididae) feeding on *Sorghum bicolor*. Environ Entomol, 33: 546-553.

Hodek I and Honek A. 1996. Ecology of Coccinellidae. Kluwer Academic, Boston, pp: 464.

Jackson PA. 2005. Breeding for improved sugar content in sugarcane. Field Crop Res, 92(2-3): 277-290.

Mote UN and Galande SM. 2004. Integrated management of sugarcane pests. In: GOI Sponsored National Training Course on Integrated Pest Management in Sugarcane, Vasantdada Sugar Institute, Manjari, pp: 34-38.

Nuessly GS and Hentz MG. 2002. Feeding effects of yellow sugarcane aphid on sugarcane. J American Soc Sug Tech, 22: 126-127.

Patil AS and Nerkar YS. 2004. Status report of woolly aphid sugarcane aphid, *Ceratovacuna lanigera*

Zehntner, a new pest of sugarcane in Maharashtra state. Vasantdada Sugar Institute, Pune, Maharashtra, India.

Patil SB, Tippannavar PS, Patil SA, Balasundaram N, Lingappa S, Gowda MVC, Khadi BM, Salimath PM, Nayakar NY, Bhat BN and Kambar NS. 2005. Identification of sugarcane clones resistant to the sugarcane woolly aphid (*Ceratovacuna lanigera* Zehntner). *Curr Sci*, 88: 284-288.

Rabindra RJ, Mohanraj P, Poorani J, Jalali SK, Joshi S and Ramani S. 2002. *Ceratovacuna lanigera* Zehntner (Homoptera: Aphididae) a serious pest of sugarcane in Maharashtra and attempts at its management by biological means. *J Biol Cont*, 16: 171-172.

Singh G, Shenhmar M and Singh SP. 2005. The incidence of top borer, *Scirpophaga excerptalis* Walker in different varieties and crop types of sugarcane in Punjab. *Indian J Ecol*, 32(1): 1-3.

Tripathi GM. 1995. Record of parasite and predator complex of sugarcane woolly aphid, *Ceratovacuna lanigera* Zehntner in Nagaland. *Indian Sug*, 44: 883-885.

Contents available at www.iamt.net.in

World Journal of Applied Sciences and Research
(ISSN 2249-4197)

2013, Volume 3, Issue 1, Pages 43-46

Life attributes and morphometrics of cabbage aphid, *Brevicoryne brassicae* Linnaeus (Hemiptera: Aphididae) on cabbage under controlled conditions

PARVEZ QAMAR RIZVI, SHABISTANA NISAR and SYED KAMRAN AHMAD

Department of Plant Protection, F/o Agricultural Sciences, Aligarh Muslim University, Aligarh, India

Correspondence: rizvipq@rediffmail.com

Article Information	Abstract
<p>Article history: Received: 15.11.2012 Revised: 20.12.2012 Accepted: 01.01.2013</p>	<p>Cabbage aphid, <i>Brevicoryne brassicae</i> L. is a notorious pest and constantly threatening the production of cole crops especially of cabbage in India. The life attributes along with morphological features of cabbage aphid were investigated under laboratory condition (temperature $26\pm1^{\circ}\text{C}$, RH-$70\pm5\%$ and photoperiod 12 hr L: D). Phenotypically, the body length and width along with cornicle length has been proved to be a useful criterion for separating virginoparous <i>B. brassicae</i> instars in samples collected from experimental sites. The observations were recorded on the nymphal period, pre-reproductive period, reproductive period, post reproductive period, adult longevity and fecundity of <i>B. brassicae</i>. The average duration of first, second, third and fourth instar was recorded as 1.6 ± 0.48, 1.6 ± 0.66, 2.0 ± 1.09 and 2.9 ± 1.57 days, respectively. The nymph completed total duration within 8.0 ± 1.54 days. In addition, pre-reproductive, reproductive and post-reproductive period were observed as 0.7 ± 0.78, 12.3 ± 3.13 and 2.3 ± 1.1 days, respectively. The average fecundity of female was recorded as 51.0 ± 21.6 nymphs and aphid took 9-19 days to complete their life cycle on cabbage.</p>
<p>Keywords: Cabbage aphid, biology, cabbage, morphometrics</p>	

1. INTRODUCTION:

Cabbage aphid, *Brevicoryne brassicae* Linnaeus is one of the most vital and notorious pest on variety of the crops including brassica (Rossa et al., 2005; Bonnemaison, 1965). Both adult and nymph suck the cell sap thereby reducing the vitality of plant (Marwat et al., 1985). Apart from sucking the cell sap, they also secrete honeydew which facilitates the growth of sooty mould on the plants (Ali and Rizvi, 2007). In addition, the life cycles of aphids are most remarkable in the winters (Petherbridae and Wright, 1938). They include parthenogenetic and sexual generations, elaborate polyphenisms and obligate shifting between unrelated host plants (Moran, 1992). Earlier studies opined that the difference between species or populations in response to selection by plant features has resulted in morphological specialization for grasping and locomotion (Kennedy, 1986). Since, there exist a number of closely related populations in natural vegetation (Mehrparvar et al., 2012) hence; the morpho-taxonomy can be regarded as a reliable and powerful tool for their identification (Poulios et al., 2007; Mehrparvar et al., 2012). Failing to do so (proper recognition of a pest species) and lack of

knowledge pertaining biological features may lead to lower the effectiveness of a management strategy. Therefore, present investigation was aimed to study biological attributes in detail along with phenotypic plasticity of *B. brassicae* on cabbage (*Brassica oleracea* var. *capitata* L.) under controlled conditions.

2. MATERIALS AND METHODS:

To accomplish the objectives, forty days old seedlings of cabbage, *Brassica oleracea* var. *capitata* were transplanted in microplots (sized 3×2 m) of experimental field at the Department of Plant Protection, Faculty of Agricultural sciences, Aligarh Muslim University, Aligarh, India in winter season of year 2009. The row to row and plant to plant distance was kept 30 cm each. Irrigation, fertilizers and all agronomical practices were followed at its adequate times. The field exposed for natural infestation of aphids and their attack was observed in the month of December on cabbage plants.

The alate viviparous adult of *Brevicoryne brassicae* were collected from young cabbage plants maintained in the fields of department and brought to the laboratory for further experimentation. Ten adults of *B. brassicae* reared individually on fresh

leaves of cabbage in separate Petri dishes in the BOD incubator calibrated at $26\pm1^\circ\text{C}$ temperature, $70\pm5\%$ RH and L: D photoperiod @ 12 hr. The aphid food (cabbage leaves) were changed daily in the morning for entire period of study. The transformation of instar was recorded on the presence of exuviae casted by the nymphs on every moult. In addition, the developmental duration of nymphs, pre-reproductive period, reproductive period, adult longevity and fecundity of *B. brassicae* were recorded till the death of each aphid. The simple binocular microscope was used to differentiate the developmental stages of *B. brassicae* and the body measurements were taken along with the cornicles of aphids.

3. RESULTS:

3.1. Biological attributes of *B. brassicae*:

Table 1. Biological parameters (in days) of *B. brassicae* on cabbage under laboratory condition

	I instar	II instar	III instar	IV Instar	Total nymphal duration	Pre-reproductive period	Reproductive period	Post-Reproductive Period	Adult Longevity	Fecundity Per Female
F ₁	1.66±0.28	1.66±0.66	2.00±1.09	2.90±1.57	8.00±1.54	0.74±0.15	12.38±3.13	2.30±0.21	15.20±3.83	51.00±3.65
F ₂	1.62±0.48	2.36±0.45	2.72±0.94	3.55±0.42	10.1±1.57	0.93±0.18	14.55±1.52	1.88±0.6	17.24±2.27	38.32±2.33
Range (1-2)	(1-3)	(1-5)	(1-7)	(8-12)	(0-2)	(9-17)	(1-5)	(9-19)	(26-72)	

F₁ = First Generation, F₂ = Second Generation

Table 2. Morphometrical measurements on different developmental stages of *B. brassicae*

S.No.	Stage	Length	Width	Cornicle length
1	I Instar	0.64±0.02 (0.62-0.70)	0.28±0.01 (0.28-0.30)	0.10±0.01 (0.10-0.12)
2	II Instar	0.94±0.06 (0.85-1.05)	0.52±0.04 (0.45-0.60)	0.23±0.02 (0.20-0.75)
3	III Instar	1.43±0.11 (1.17-1.57)	0.69±0.03 (0.65-0.75)	0.37±0.03 (0.30-0.40)
4	IV Instar	1.77±0.07 (1.67-1.90)	0.89±0.06 (0.80-1.00)	0.38±0.04 (0.35-0.05)
5	Adult	1.77±0.08 (1.67-1.90)	0.89±0.06 (0.80-1.00)	0.38±0.04 (0.35-0.45)

Values in parenthesis are range of respective parameters

3.2. Morphometrics of *B. brassicae*:

The observations showed a distinct variation in morphometric measurements on the basis of age of *B. brassicae*. The body length of first instar nymph was found to be ranging from 0.62 to 0.70 mm, and measured an average of 0.64±0.02 mm, while body width varied from 0.28 to 0.30 mm with an average of 0.10±0.001 mm length. The cornicle (sub laterally attached with the abdomen) length was recorded as 0.10±0.001 mm with range of 0.1-0.12 mm (Table 2). When, the nymph enter to second instar stage, it was measured as 0.94±0.06 mm in length and 0.52±0.04 mm with range of 0.85-1.05 and 0.45-0.60 mm, respectively. The length of cornicles was also increased and measured as 0.23±0.02 mm with the

The biology of *Brevicoryne brassicae* revealed that female showed viviparity and the duration of first, second, third and fourth instar nymphs were recorded as 1.66±0.28, 1.66±0.66, 2.00±1.09 and 2.90±1.57 days in F₁ generation and also as 1.62±0.44, 2.36±0.45, 2.72±0.94, 3.55±0.42 days in F₂ generation (Table 1). Aphid completed nymphal period within 8.00±1.54 and 10.10±1.57 days in F₁ and F₂ generation, respectively. The pre-reproductive, reproductive and post-reproductive period was documented as 0.74±0.15 and 0.93±0.18 days, 12.38±3.13 and 14.55±1.52 days, and 2.30±0.21 and 1.88±0.60 days during F₁ and F₂ generations (Table 1). In addition, adult longevity was recorded as 15.20±3.83 and 17.24±2.27 days in first and second generation. However, the female achieved highest reproductive fecundity of 51.00±3.65 and 38.32±2.33 nymphs in 12.38±3.13 and 14.55±1.52 days during F₁ and F₂ generation, respectively (Table 1).

range of 0.2-0.75 mm (Table 2). It was interestingly noticed that each nymphal instar was complimentary to each other and the size increased after every molting. The third instar nymph was an average of 1.43±0.11 mm in length and 0.69±0.03 mm in width. The size of cornicle was however gauged 0.37±0.034 mm with range of 0.3-0.4 mm (Table 2). Similarly, the final (fourth) instar nymph attained an average length of 1.77±0.07 mm with range of 1.67-1.90 mm and width of 0.89±0.06 mm with range of 0.8-1.0 mm. The cornicles were documented as 0.38±0.035 mm long, ranging between 0.35-0.45 mm. It was attention grabbing to note the adults length, width and size of cornicles similar as recorded for the final instar stage of *B. brassicae* (Table 2).

4. DISCUSSION:

4.1. Biological attributes of *B. brassicae*:

Biology of *Brevicoryne brassicae* L., was studied during winter season under laboratory conditions. It was noticed that the species multiplied with viviparous parthenogenetic reproduction throughout the year (Hughes, 1963). With the commencement of viviparity, a distinct variation with respect of time taken to complete a particular life stage was marked among different nymphal stages. Similar duration of immature life was also recorded by Devraj and Singh (2003) and Rossa et al. (2007) in first generation. A relatively prolonged development was however seen in second generation but force deriving the difference could not be identified. There was a marked pre-reproductive period prior to reproduction. The pooled life of *B. brassicae* was also observed to be added by a distinct post reproductive period (Ulusoy and Bayhen, 2006). Debraj and Singh (2003) observed similar duration of the total *B. brassicae* life, while total fecundity revealed proximity with the findings of Najafabadi et al. (2005).

4.2. Morphometrics of *B. brassicae*:

Taxonomists have frequently used phenotypic variations as primary parameters in separating many natural populations of organisms and many species have been described based on the results of these studies (Mehrparvar et al., 2012). Every nymphal instar was complimentary to each other; it was the size only that differentiated them after exuviae (Debaraj and Singh, 2000). The measurements of body length, width and cornicle length of *B. brassicae* nymphs reared under laboratory environment were found to be instar-specific and their size increased with the advancement of age (Hutchison and Hogg, 1983; Singh and Srivastava, 1989). There was generally a little overlap between successive instar and it was evidently easy to separate different nymphal instars accurately on the basis of these measurements (Vaz et al., 2004; Debaraj and Singh, 2000; Gorur, 2004). These phenotypic revelations under present investigation can be used to differentiate inter as well as intra-specific populations of *B. brassicae*.

5. ACKNOWLEDGEMENTS:

The authors are thankful to the Chairman, Department of Plant Protection and the Dean, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh for arrangement of necessary facilities.

6. REFERENCES:

Ali A and Rizvi PQ. 2007. Development and predatory performance of *Coccinella septempunctata* L. (Coleoptera: Coccinellidae) on different aphid species. *J Biol Sci*, 7: 1478-1483.

Bonnemaison L. 1965. Insect pests of crucifer and their control. *A Rev Ento*, 10: 233-256.

Debaraj Y and Singh TK. 2000. Morphometric study of different stages of cabbage aphid, *Brevicoryne brassicae* (L.) (Homoptera: Aphididae). *Russian Entomol J*, 9: 315-319.

Debraj Y and Singh TK. 2003. Seasonal biology of the cabbage aphid, *Brevicoryne brassicae* (L.) (Homoptera: Aphididae) in India. *U P J Zool*, 23: 133-137.

Gorur G. 2004. Developmental noise in cabbage aphid, *Brevicoryne brassicae*, (Homoptera: Aphididae) reared on both cabbage and radish. *J Entomol Res Soc*, 6: 15-22.

Hughes RD. 1963. Population dynamics of the cabbage aphid, *Brevicoryne brassicae* (L.) *J Ani Eco*, 32: 393-424.

Hutchison WD and Hogg DB. 1983. Cornicle length as a criterion for separating field-collected nymphal instars of the pea aphid, *Acyrtosiphon pisum* (Homoptera: Aphididae). *The Canadian Ento*, 115: 1615-1619.

Kennedy CEJ. 1986. Attachment may be basis for specialization in oak aphids. *Ecol Ento*, 11: 291-300.

Marwat GN, Ahmad I and Khatoon S. 1985. Role of different levels of potassium on population densities of cabbage aphids, *Brevicoryne brassicae* L. on sarsoon and its yield potential. *Sarhad J Agri*, 1: 223-229.

Mehrparvar M, Madjdzadeh SM, Arab NM, Esmaeilbeygi M and Ebrahimpour E. 2012. Morphometric discrimination of black legume aphid, *Aphis craccivora* Koch (Hemiptera: Aphididae), populations associated with different host plants. *North-West J Zool*, 8: 172-180.

Moran NA. 1992. The evolution of aphid life cycles. *Ann Rev Ento*, 37: 321-348.

Najafabadi SSM, Mofhaddam HA and Golamian G. 2005. Population fluctuation of cabbage aphid (*Brevicoryne brassicae*) and identification of its natural enemies in sistan region. *J Sci Tech Agric Nat Res*, 8: 175-185.

Petherbridge FR and Wright DW. 1938. The cabbage aphid, *Brevicoryne brassicae* (L.) *J Min Agri Fish*, 45: 140-148.

Poulios KD, Margaritopoulos JT and Tsitsipis JA. 2007. Morphological separation of host adapted taxa within the *Hyalopterus pruni* complex

(Hemiptera: Aphididae). European J Ento, 104: 235-242.

Rossa F, Vasicek A, Lopez M, Mendy M and Paglioni A. 2005. Biology and demography of *Brevicoryne brassicae* (L.) (Hemiptera: Aphididae) on four cultivars of *Brassica oleracea* L. under laboratory conditions (II). Revis Investiga Agrop, 34: 105-114.

Rossa F, Vasicek A, Paglioni A and Lopez M. 2007. Biological and demographical expression of *Brevicoryne brassicae* (L.) (Hemiptera: Aphididae) on six *Brassica oleracea* var. *capitata* (L.) cultivars at low temperature. Revis Facult Agron Univ Buen Aires, 27: 149-153.

Singh R and Srivastava M. 1989. Cornicle length as a criterion for identifying field collected nymphal instars of aphids (Homoptera: Aphididae). Zoosyst Evol, 65: 139-144.

Ulusoy MR and Bayhan SO. 2006. Effect of certain Brassica plants on biology of the cabbage aphid *Brevicoryne brassicae* under laboratory conditions. Phytopara, 34: 133-138.

Vaz LAL, Tavares MT and Lomonaco C. 2004. Diversidade e tamanho de himenópteros parasitóides de *Brevicoryne brassicae* L. e *Aphis nerii* Boyer de Fonscolombe (Hemiptera: Aphididae). Neotrop Ento, 33: 225-230.

Contents available at www.iamt.net.in

World Journal of Applied Sciences and Research
(ISSN 2249-4197)

2013, Volume 3, Issue 1, Pages 47-51

Parasitoids of *Artona chorista* Jordan (Lepidoptera: Zygaenidae) from Sikkim: A New Record

SUJATA YADAV and ANAND KUMAR YADAV

Department of Zoology, Agra College, Agra, U.P., India

Correspondence: sujatayad@rediffmail.com

Article Information	Abstract
<p>Article history: Received: 08.11.2012 Revised: 12.12.2012 Accepted: 02.01.2013</p>	<p>Large cardamom is a principal cash crop of Sikkim, India and threatens by the attacked of more than twenty insect pests. Among them, hairy caterpillar, <i>Artona chorista</i> is recorded as a major pest of this crop in some areas of Sikkim. Two new hymenoptera parasites viz., <i>Apanteles</i> sp. and <i>Dolichogenidea</i> sp. were recorded on <i>A. chorista</i> for the first time from India. The field parasitism of host larvae was found to be 15.00 and 5.17 percent by <i>Apanteles</i> sp. and <i>Dolichogenidea</i> sp., respectively.</p>
<p>Keywords: <i>Artona chorista</i>, <i>Apanteles</i> sp., <i>Dolichogenidea</i> sp., Parasite</p>	

1. INTRODUCTION:

Large cardamom, *Amomum subulatum* Roxburg (Scitaminae: Zingiberaceae) is a major cash crop of Sikkim, which contributes about 70 % to the total production (3512 tonnes) of India (Subba, 1984). The information on various aspects of this crop was reviewed by Rao et al. (1993). The crop is attacked by more than twenty insect pests, some of which cause serious damage (Table 1). Among them large cardamom foliage feeder caterpillar pests viz., *Cricula trifenestrata* Helfer, 1858 (Lepidoptera: Saturniidae) and *Dasychira inclusa* Walker, 1885 (Lepidoptera: Lymantriidae) was recorded from India for the first time by Yadav and Kumar (2003 & 2004).

In addition, Yadav et al., (1992 & 1993) recorded a new hairy caterpillar namely *Artona chorista* Jordan (Lepidoptera: Zygaenidae) as a major pest of large cardamom in some areas of Sikkim including Assam Linzey, Dikling, Gangtok, Naitham and also from district of Darjeeling, West Bengal i.e., Rango, Suruk, Godak etc. The morphology and symptoms of attack of this pest are closely resembles with *Clelea plumbiola* (Hampson, 1892). The outbreak of *C. plumbiola* was reported during 1978 in some districts of Sikkim and about 80 hectares land was covered with foliar spray of rupees sixty six thousand to check this epidemic (Subba, 1979). Keeping the feeding ability of *A. chorista* on cardamom and also indiscriminate use of chemical insecticides in mind, present study has been made to find out alternative and risk free management strategies through the use of natural parasitoids. The

parasites of this species have not been recorded so far. Therefore, present study provides information on the control of *A. chorista* through natural enemies.

2. MATERIALS AND METHODS:

The leaves of large cardamom infested with larvae of *Artona chorista* were collected from different areas of Sikkim and brought to the laboratory for rearing. The fresh cardamom leaves were provided to the larvae daily till pupation. The study was carried out in the laboratory ($13.03\pm2.9^{\circ}\text{C}$ temperature and $85.00\pm8.9\%$ relative humidity). The parasitoids emerged from *A. chorista* were collected daily. The data were also recorded on sex ratio, longevity and incidence of parasitism of the parasitoid species.

3. RESULTS AND DISCUSSION:

The emerged parasitoids were identified as *Apanteles* sp. and *Dolichogenidea* sp. and they were reported for the first time on *A. chorista* from India.

3.1. Systematic position of parasitoids

Phylum	:	Arthropoda
Class	:	Insecta
Order	:	Hymenoptera
Superfamily	:	Ichneumonoidea
Family	:	Braconidae
Genus	:	<i>Apanteles</i> or <i>Dolichogenidea</i>

Table 1. Insect pests of large cardamom *Amomum subulatum*

S.No.	Name of insect pest	Order	Family	Reference
1.	<i>Chrysomela chlorine</i>	Coleoptera	Chrysomelidae	Azad Thakur 1980
2.	<i>Basiolepta femoratum</i>	Coleoptera	Chrysomelidae	Pangtey and Azad Thakur, 1986
3.	Scolytid beetle	Coleoptera	Scolytidae	Azad Thakur, 1982
4.	White grub	Coleoptera	Psocidae	Pangtey and Azad Thakur, 1986
5.	<i>Pentalonia nigronervosa</i>	Himptera	Aphididae	Pangtey and Azad Thakur, 1986
6.	<i>Ropholosiphum padi</i> Linn.	Himptera	Aphididae	Pangtey and Azad Thakur, 1986
7.	<i>Ropholosiphum maidis</i> Fitch	Himptera	Aphididae	Pangtey and Azad Thakur, 1986
8.	<i>Micromyzzus kalimpongensis</i>	Himptera	Aphididae	Pangtey and Azad Thakur, 1986
9.	<i>Pentalonia caladi</i> Goot	Himptera	Aphididae	Pangtey and Azad Thakur, 1986
10.	<i>Rhipiphorothrips cruentatus</i> Cock	Himptera	Jassidae	Pangtey and Azad Thakur, 1986
11.	<i>Kolla opponens</i>	Himptera	Jassidae	Pangtey and Azad Thakur, 1986
12.	<i>Kolla mimica</i>	Himptera	Jassidae	Pangtey and Azad Thakur, 1986
13.	White grub	Coleoptera	Psocidae	Pangtey and Azad Thakur, 1986
14.	Psocid	Coleoptera	Psocidae	Pangtey and Azad Thakur, 1986
15.	<i>Glyphepterix</i> sp.	Lepidoptera	Glyphiperidae	Bhowmick, 1962
16.	<i>Clelea plumbiola</i> Hampson	Lepidoptera	Zygaenidae	Subba, 1979
17.	<i>Eupterote fabia</i> Crammer	Lepidoptera	Eupterodidae	Subba, 1984
18.	<i>Bradyzia</i> sp.	Diptera	Sciidae	Kumar and Yadav, 1993
19.	<i>Artona chorista</i> Jordan	Lepidoptera	Zygaenidae	Yadav et al., 1993
20.	<i>Cricula trifenestrata</i> Helfer	Lepidoptera	Saturniidae	Yadav and Kumar, 2003
21.	<i>Dasychira inclusa</i> Walker	Lepidoptera	Lymantiniidae	Yadav and Kumar 2004

3.2. *Apanteles* sp. nov.:

Apanteles sp. ex. *A. chorista* on *A. subulatum*,
Collector: Anand Kumar, Gangtok, 1990

Apanteles has been reported from the caterpillars of families belonging to Geometridae, Noctuidae, Hesperiidae, Arctiidae, Choreutidae, Saturniidae, Pyraloidea, Tortricoidea, Gelechioidea and Tineoidea (James et al., 2009).

3.2.1. Distribution:

India, Sikkim: Assam Linzey, Dikling; West Bengal: Rango Suruk, Godak.

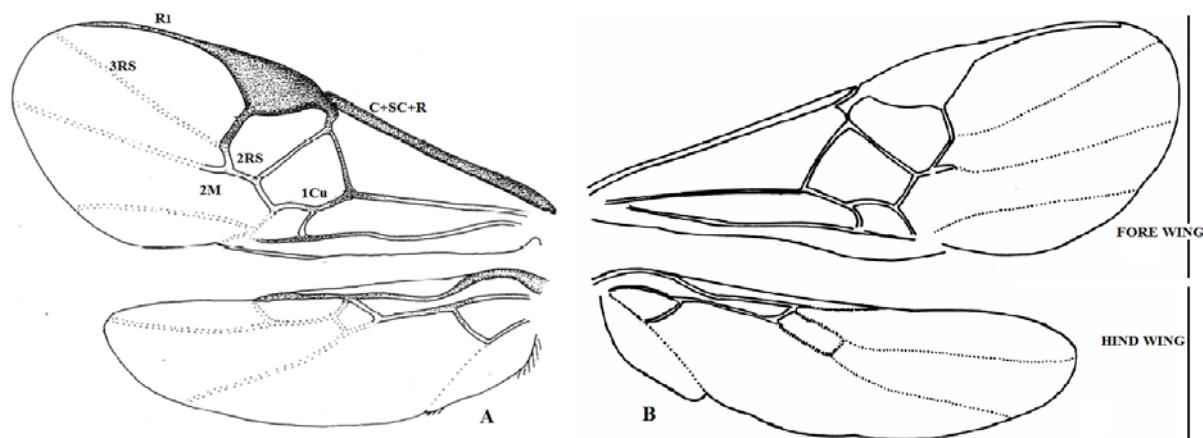
3.2.3. Diagnostic characters:

Forewing with second r-m vein absent, so that the small areolet (second submarginal cell) is open distally; hindwing with vannal lobe distally flattened and with reduced fringe of hairs; punctuation of posterior part of mesonotum breaking down into more confluent longitudinal sculpturing, especially submedially; propodeum with oval, pentagonal, hexagonal or anteriorly open medial areola; first metasomal tergite usually with medial subapical depression and second metasomal tergite strongly transverse, often with convex or sinuate posterior margin; ovipositor and sheaths long and exserted, manipulatable via a medially desclerotized hypopygium (subgenital plate). The genus is easily confused or less diverse with *Dolichogenidea*, which differs in having distinct punctures posteriorly on the

3.2.2. Biology:

Preliminary observations revealed that *Apanteles* sp. is a solitary endo-larval parasite of *A. chorista*. The larvae of parasites came out from the host larva after formation of the cocoon by the host. It then formed a small white silken cocoon beside the dead host larvae. It emerged by making a small hole at one end of the host cocoon. The sex ratio was 1: 1.23 male: female. The unfed males lived on an average 1 day while females survived for 1-2 days. The efficacy of this parasite in field was found to be 15.00 percent. *Apanteles* sp. has been reported as a common parasite of many lepidopteran pests in India (Nair, 1975). Beside present host, biology of

mesonotum, and a convex and evenly fringed hind wing vannal lobe.


3.2.4. Synonyms:

- = *Cotesia* CAMERON, Men. Manch. Phil Soc, iv, pp: 185 (1891).
- = *Microgaster (Apanteles)* THOMSON, Opusc Ent, pp: 2252 (1895).
- = *Pseudapanteles* ASHMEAD, Proc Ent Soc Washing, iv, pp: 166 (1897).
- = *Protanteles* ASHMEAD, Proc Ent Soc Washing, iv, pp: 166 (1897).
- = *Urogaster* ASHMEAD, Proc Ent Soc Washing, iv, pp: 166 (1897).
- = *Parapanteles* ASHMEAD, Proc US Nat Mus, xxiii, pp: 131 (1900).
- = *Glypatapanteles* ASHMEAD, Proc US Nat Mus, xxviii, pp: 147 (1904).
- = *Cryptapanteles* VIERECK, Proc Ent Soc Washing, xi, pp: 209 (1909).
- = *Dolichogenidea* VIERECK, Proc US Nat Mus, xi, pp: 173 (1911).
- = *Stenopleura* VIERECK, Proc US Nat Mus, xi, pp: 187 (1911).

Genus *Apanteles* was erected by Foerster in 1862 with a type species *Apanteles obscura* Nees. It is one of the most important and well known group of Microgastrinae, forms a genus of enormous extent, containing nearly 600 species. The generic and tribal classification of Microgastrinae has always presented considerable problems, largely because of the size and worldwide distribution of the group and high incidence of morphological convergence and character reduction (Shaw and Huddleston, 1991).

Muesebeck (1920) have placed the majority of microgastrine species in this genus, whether by original designation or by the synonymy. Nixon (1965)

Fig. 1. Virtual wing venation (fore and hind) of *Apanteles* sp. nov (a) and *Dolichogenidea* Viereck (b)

3.3.2. Biology:

Dolichogenidea sp. is also a solitary endo-larval parasite of *A. chorista*. The nature of parasitism

recognized the subfamily, formally recognizing the tribe Microgastrinae, which comprised 19 genera. He placed most of the species in *Apanteles*, and divided the genus into 44 species groups for ease of handling.

Mason (1981) established that Nixon's concept of the genus was polyphyletic i.e., not based on a natural grouping, but species in the genus derived from two or more ancestral sources. Mason elevated the tribe Microgastrine to subfamily status, and reorganized the Microgastrinae species into 5 tribes and 51 genera, of which 23 were new. Mason's analysis was rejected by Walker et al. (1990), who showed that *Apanteles* sensu Nixon was polyphyletic, but they did not provide any formal alternative classification for the subfamily, and Mason's classification is currently widely accepted. Austin and Dangerfield (1992) have since revised the Australian Microgastrinae, providing a beautifully illustrated and user-friendly key to this group.

Later on, Whitfield (1997) and Whitfield et al. (2002) have also supported Manson's general approach, but challenge some aspects of his phylogeny and the out group relationships within the lineage of braconid subfamilies related to Microgastrinae and they analyzed further these subfamilies using both morphological and molecular data.

3.3. Dolichogenidea Viereck:

Dolichogenidea sp. ex. *A. chorista* on *A. subulatum*,
Collector: Sujata Yadav, Assam Linzey, 1990

3.3.1. Distribution:

India, Sikkim: Assam Linzey, Gangtok, Naitham; West Bengal: Rango, Godak.

and its emergence is similar to that of *Apanteles* sp. and the sex ratio male: female was 1: 1.73. The average longevity of males was 1 day while females survived for 2-3 days without food. However, field

parasitism was found to be 5.17 per cent. This parasite has also been reported to be attack on the pest of pyraloids, tortricoids, tineoids, gelechioids, Pyralidae, Crambidae, Thyrididae, Mimallonidae, and Elachistidae (Mason, 1981; James et al., 2009).

3.3.3. Diagnostic characters:

Forewing with second r-m vein absent, so that the small areolet is open distally; hindwing with vannal lobe distally convex, bearing an even fringe of hairs; punctuation of posterior part of mesonotum remaining distinct submedially; propodeum with oval, pentagonal, hexagonal or occasionally poorly defined medial areola; first metasomal tergite usually broad, with a medial subapical depression and second metasomal tergite strongly transverse, often with a convex or sinuate posterior margin; ovipositor and sheaths long and exserted, manipulatable via a medially desclerotized hypopygium. The genus differs from *Apanteles* in having longitudinal sculpturing posteriorly on the mesonotum, and a flattened and sparsely fringed hindwing vannal lobe.

The genus *Dolichogenidea* was erected by Viereck in 1911 containing about 1000 species. He described *Dolichogenidea* as a subgenus of *Apanteles* because of its elongated genae under which he included *Apanteles (Dolichogenidea) banksi* Viereck. It resembles with Nixon's *laevigata* group of *Apanteles* except long cheeks. However, Nixon placed *D. banksi* in his *crassicornis* group without observing any specimens. No synonyms have been associated with this taxon yet.

Furthermore, Mason (1981) supported *Dolichogenidea* as ubiquitous genus of tribe Apantelenii under Microgastrinae and also placed *Apanteles* of Nixon under this genus. He also added some new combinations under this genus. Several genera of Microgastrinae are either polyphyletic or at least paraphyletic as currently delineated, and Mason's tribal groupings conflict with recent phylogenetic results (Walker et al., 1990; Mardulyn and Whitfield, 1999). Large scale phylogenetic studies of Microgastrinae based on multiple genes are currently used by many workers (Banks and Whitfield, 2006; Murphy et al., 2008).

4. ACKNOWLEDGEMENTS:

We are grateful to Dr. A. K. Walker, International Institute of Entomology, London for the identification of specimens.

5. REFERENCES:

Austin AD and Dangerfield PC. 1992. Synopsis of Australian Microgastrinae (Hymenoptera: Braconidae) with a key to genera and description of new taxa. Invertebr Taxon, 6: 1-76.

Azad Thakur NA. 1982. Seasonal incidence of insect pests of large cardamom (*Amomum subulatum* Roxburg) in Sikkim. Res Bull, 21: 1-21.

Azad Thakur NS. 1980. Pest complex on large cardamom in Sikkim. Krishi Samachar, 3: 19-20

Banks JC and Whitfield JB. 2006. Dissecting the ancient rapid radiation of microgastrinae wasps genera using additional nuclear genes. Mole Phylogen Evolu, 41: 690-703.

Bhowmik TP. 1962. Insect pests of large cardamom and their control in West Bengal. Indian J Ent, 24: 283-286.

Foerster A. 1862. Synopsis der Familien und Gattungen der Braconer. Veh Naturh Ver Preuss Rheinl, 19: 225-228.

Hampson GF. 1892. Fauna of British India, Moths, pp: 240.

Helfer. 1858. *Cricula trifenestrata*. Her-Shaff. Samml Aus Eur Schmet, pp: 61.

James B. Whitfield JJ and Paul KM. 2009. Reared microgastrine wasps (Hymenoptera: Braconidae) from Yanayacu Biological Station and environs (Napo Province, Ecuador): Diversity and host specialization. J Ins Sci, 9: 1-22.

Kumar A and Yadav NCS. 1993. Record of new pest *Bradysia* sp. and its predator *Phaonia simulans* on large cardamom. J Appl Zool Res, 4: 103-104.

Mardulyn P and Whitfield JB. 1999. Phylogenetic signal in the COI, 16S and 28S genes for inferring relationship among genera of microgastrinae (Hymenoptera: Braconidae), evidence of a high diversification rate in this group of parasitoids. Mole Phylogen Evolu, 12: 282-294.

Mason WRM. 1981. The polyphyletic nature of *Apanteles* Foerster (Hymenoptera: Braconidae): a phylogeny and reclassification of Microgastrinae. Memo Entomol Soc Canada, 115: 1-147.

Murphy N, Banks JC, Whitfield JB and Austin AD. 2008. Phylogeny of the microgastroid complex of subfamilies of braconid parasitoid wasps (Hymenoptera) based on sequence data from seven genes, with an improved estimate of thirteen origin of the lineage. Mole Phylogen Evolu, 47: 378-397.

Musebeck CFW. 1920. A revision of the North American Ichneumon- flies belonging to the

genus *Apanteles*. Proc US Nat Mus, 58: 483-576.

Nair MRGK. 1975. Insects and mites of crop in India, ICAR, New Delhi, pp: 408.

Nixon GEJ. 1965. A reclassification of the tribe Microgasterinae (Hymenoptera: Braconidae). Bull British Mus Entomology, 2: 1-284.

Pangtey US and Azad Thakur NS. 1986. insect pests of large cardamom in Sikkim. Indian Farm, 35: 17-21.

Rao YS, Kumar A, Chatterjee S, Naidu R and George CK. 1993. Large cardamom (*Amomum subulatum* Roxburg) a review. Spic Arom Crops, 2: 1-5.

Shaw MR and Huddleston T. 1991. Classification and biology of Braconid wasps, In: Handbook for the identification of British Insects. Roy Entomol Soc London, 7: 80-86.

Subba JR. 1979. Efficiency of commonly used insecticides for the control of hairy caterpillar (*Clelea plumbiola* Hamp.) on large cardamom (*Amomum subulatum* Roxburgh). Krishi Samachar, 1: 17-19.

Subba JR. 1984. Agriculture in the hills of Sikkim. Sikkim Sci Soc, Gangtok, pp: 286.

Viereck HL. 1911. Description of six new genera and thirty one new species of ichneumon flies. Proc US Nat Mus, 40: 173-196.

Walker. 1855. *Dasychira inculusa*. Catalogue of the moths of India, 7: 453.

Walker AK, Kitching IJ and Austin AD. 1990. A reassessment of the phylogenetic relationships with in the microgastrinae (Hymenoptera: Braconidae). Cladistics, 6: 291-306.

Whitfield JB. 1997. Subfamily microgastrinae. In: Manual of the new world genera of the family Braconidae (Hymenoptera). (Eds: Inherton RA, Mansh PM and Sharkey MJ). The International Society of Hymenopterists. Washington, pp: 333-336.

Whitfield JB, Mardulyn P, Austin AD and Dowton M. 2002. Phylogenetic relationships among microgastrinae braconid wasps genera based on data from the 16S, COI and 285 genes and morphology. Syst Entomol, 27: 337-359.

Yadav S, Kumar A and Naidu R. 1992. Biology of *Artona chorista* Jordan (Lepidoptera: Zygaenidae) on large cardamom. Bioecol Cont Ins Pes, UP Zool Soc, Muzaffarnagar, pp: 73-78.

Yadav NCS, Kumar A and Naidu R. 1993. Record of a new pest *Artona chorista* Jordan (Lepidoptera : Zygaenidae) on large cardamom from Sikkim and West Bengal. Entomon, 18: 103-104.

Yadav S and Kumar A. 2003. New record of wild silk caterpillar, *Cricula trifenestrata* Helfer on large cardamom and notes on it's biology. UP J Zool, 23: 67-69.

Yadav S and Kumar A. 2004. New record of a caterpillar, *Dasychira inculsa* on large cardamom seedlings and its biology. J Ecobiol, 16: 369-372.

Contents available at www.iamt.net.in

World Journal of Applied Sciences and Research
(ISSN 2249-4197)

2013, Volume 3, Issue 1, Pages 52-56

Importance of medicinal plants of Panki Thermal Power Station, Kanpur, Uttar Pradesh: a case study

POONAM AGARWAL

Department of Botany, Government Girls P.G. College, Fatehpur, U.P., India

Correspondence: agarwalpoonamdr@gmail.com

Article Information	Abstract
<p>Article history: Received: 30.11.2012 Revised: 25.12.2012 Accepted: 01.01.2013</p>	<p>Present study was confined to the traditional medicinal uses of plants growing in and around the area of Panki Thermal Power Station, Kanpur, Uttar Pradesh. Traditional medicines play a large role in Indian society. The ethno-medicinal study of this campus has been taken to investigate availability and medicinal use of traditional plant maintained in urban environment. A total of 54 species of medicinal plants were collected, out of which 19 species belonging to 15 families have utilized by the inhabitants for their health care. Most of the species were in local distribution and few species were cultivated in gardens. Despite the large urban environment and awareness about modern allopathic medicines, natives of the campus are still using herbal remedies for the treatment of their minor ailments.</p>
<p>Keywords: Herbal plant, medicinal plant, thermal power station, urban environment</p>	

1. INTRODUCTION:

Human plant intimate relationship is as old as the origin of human on this planet. With the development of social sense in primitive man, their dependence on the plant resources increased not only for food but also for fodder, fuel, shelter and drug. Utilization of plants for medicinal purposes in India has been documented long back in ancient literature because they are essential to human survival (Shastri and Chaturvedi, 1996). The reference to the curative properties of some herbs in Rig Veda seems to be the earliest records on the use of plants as medicines. Traditional medicines based on herbal remedies have always played a key role in health system of Indian natives. The old traditional Indian system of medicine is one of the most ancient medicinal practices known to the world (Nadkarni, 1908). About 400 plants are used in regular production of Ayurvedic, Siddha, Unani and tribal medicines. Some modern drugs have been deducted from folk lore and traditional medicines. Ethno-botanical plants known for their therapeutic interest exhibit great chemical diversity and several of them have been tested as source of valuable drugs (Shastri and Chaturvedi, 1996). According to Broadbent (2005) urban green area and their associated biodiversity are essential for human right and this diversity provides a wide range of ecosystem services. Despite this importance, very little

information exists on the cities flora in general and medicinal species found within its limit in particular. Accelerated pace of globalization and rural urban migration today, people became more prone to diseases, decay and degeneration. Therefore, urban ethno-botany is a rapidly expanding field of study. As people migrate between rural and urban environment, they exchange knowledge on cultural conditions and medicinal plants. So many plants are frequently used by local inhabitants for treatment of various diseases.

Medicinal plants are now in a 'come back' phase with last two decades and people shifting their focus back to the forgotten traditional natural herbal remedies for cure of their common ailments. Therefore, present paper gives an account on medicinal importance of plant species used by local inhabitants in treatment of various diseases. Although, most of the uses found interesting when present study was compared with published literature on Indian ethno-botany (Jain, 1991; Chopra and Chopra, 1956; Kirtikar and Basu, 1933; Nadkarni, 1908).

2. MATERIALS AND METHODS:

The present study was performed in and around the area of Panki Thermal Power Station, Panki, Kanpur, Uttar Pradesh. The study area is located at 26° north latitude and 80° east longitudes

at the elevation of 126 meters from sea level. Kanpur has continental type of monsoon climate or humid mesothermal climate. The ethno-medicinal study of Panki thermal power campus has been attempted with a view to enlist the common medicinal plant resources and their utilization against herbal remedies.

Field survey has been made in different seasons at various places of thermal power campus *i.e.* wastelands, bare lands, play grounds, road sides, near residential localities and gardens. Collected plants were identified with the help of available literatures (Duthie, 1960; Hooker, 1973). Ethno-medicinal uses of collected plants were then extracted from the relevant literature available (Nadkarni, 1908; Kirtikar and Basu, 1933; Biswas, 1956; Dastur, 1962; Jain, 1991; Arora, 1997; Mehrotra and Mehrotra, 2005). Ethno medicinal uses

mentioned in literature were crosschecked through interviews with local inhabitants of this campus.

3. RESULTS AND DISCUSSION:

A total of 54 medicinal plants were collected from the campus of Panki Power House, Kanpur. They were known for their therapeutic value in both organized system of medicine such as Ayurveda, Unani and Homeopathy as well as unorganized system of medicine such as folk medicine. Out of these, only 19 most common plants belonging to 15 families (13 dicots and 2 monocots) were commonly used by these urban natives in caring their health. Most of the species were distributed at local places including home gardens. The data on botanical name, local name, plant parts and their ethno-medicinal are presented in table 1.

Table 1. Systematic account and uses of medicinal plant of Panki Thermal Power Station, Kanpur, U.P., India

S.No.	Botanical name	Local name	Family	Parts used	Ethno medicinal uses
1.	<i>Aegle marmelos</i> Corr.	Bel	Rutaceae	Fruit	Pulp used in chronic diarrhoea and dysentery with soothing effects for intestine.
2.	<i>Allium sativum</i> L.	Lahsun	Amaryllidaceae	Bulb	Power up immune system, cleans blood, as antibiotic and antifungal.
3.	<i>Aloe vera</i> L.	Ghee-kwar	Liliaceae	Leaf gel	Relieve constipation, Rheumatism, Arthritis, externally used as moisturizer, lowers blood sugar.
4.	<i>Azadirachta indica</i> A.Juss	Neem	Meliaceae	Twig Leaf Bark	Used as brush to cure toothache, skin diseases and boils, blood purifier, measles, small pox and wounds, as antiseptic.
5.	<i>Boerhavia diffusa</i> L.	Punar - nava	Nyctaginaceae	Roots	Root decoction is given in jaundice, small pieces of roots tied with thread in form of chain are wearied around neck by patients of jaundice. Also as myocardial stimulant and as a diuretic.
6.	<i>Calotropis Procera</i> Br.	Aak/ Madar	Asclepiadaceae		Leaves warmed in oil applied in inflammatory part of the body.
7.	<i>Crinum latifolium</i> L.	Sukh darshan	Amaryllidaceae	Leaf	The leaf is warmed and juice is dropped in ear to relieve earache.
8.	<i>Curcuma longa</i> L.	Haldi	Zingiberaceae	Rhizome	Mixed with warm milk, it is used in common cold. Juice of fresh rhizomes is used as an antiparasitic and antiseptic for many skin diseases. Externally on indolent ulcers and a paste made from the powdered rhizome along with lime forms a remedy for inflamed joints.
9.	<i>Eclipta alba</i> Hassk.	Bhangra	Asteraceae	Whole plant	Leaf extract used to head to relieve dandruff and to naturally blacken grey

10.	<i>Emblica Officinalis</i> Gaertn	Amla	Euphorbiaceae	Fruits	hair. Leaf juice boiled with coconut oil used to treat headache and promote hair growth. Plant used in jaundice, urinary infection and liver enlargement.
11.	<i>Eugenia jambolana</i> Lam	Jamun	Myrtaceae	Seeds	Useful in liver, piles and stomach ache, rich in vitamin 'C', hence increase resistance in body.
12.	<i>Hibiscus rosasinensis</i> L.	Gurhal/ Java kusum	Malvaceae	Flower	Flower petals boiled in coconut oil applied to head stimulate hair growth.
13.	<i>Lawsonia alba</i> L.	Mehndi	Lytraceae	Leaf	Paste of leaves used in headache, burning sensation in feet and hands. Also used as hair conditioner.
14.	<i>Mentha arvensis</i> L.	Podina	Lamiaceae	Leaf	Promote digestion and digestive enzymes, sooth stomach ache caused by ingestion, in flatulence.
15.	<i>Oscimum sanctum</i> L.	Tulsi	Lamiaceae	Leaf	Decoction of leaves used to cure common colds. Leaf juice useful in bronchitis, applied locally on ringworm and other skin diseases.
16.	<i>Psidium guajava</i> L.	Amrud	Myrtaceae	Fruit	Green immature fresh fruit is fried, crushed and mixed with teaspoon of honey. It is used for cough, bronchitis, asthma.
17.	<i>Ricinus communis</i> L.	Arandi	Euphorbiaceae	Leaf	Leaves coated with mustard oil and warmed are applied externally over painful joints in rheumatism. Seed oil used as purgative, skin diseases, piles.
18.	<i>Tinospora cordifolia</i> (Willd) Miers	Giloya/ Gurich	Menispermaceae	Stem	Stem decoction with sugar is given to cure typhoid. Also used for cold, fever, malaria, ventral complaints and heart problems.
19.	<i>Trigonella foenumgraecum</i> L.	Methi	Fabaceae	Seeds/ Leaves	Used for stomach upset, gastrointestinal problems, inflammations, lowering blood sugar, prevents hair fall, for dandruff, soaked and crushed seeds are found to restore hair shaft and promote hair growth. Used as vegetables , beneficial for pain in waist, joints etc.

Various plant parts such as leaves, bark, flowers, fruits, roots, seeds and rhizome of documented medicinal plants were mostly used to cure diarrhea, dysentery, diabetes, bronchitis, jaundice, skin diseases, boils, wounds, ulcers, typhoid, malaria, measles, small pox, hair growth, respiratory complaints, ear ache, rheumatism etc (Table 1). Many studies have been carried to documented ethno-medicinal information from

different parts of the world i.e. Tanzania (Augustino and Gillah, 2005), Pakistan (Sardar and Khan, 2009), Ethiopia (Hailemariam et al., 2009), Nepal (Dangol, 2008; Yadav et al., 2011), Malaysia (Lin, 2005), and also support present investigations. However, in India, most of the work has been carried from Kanpur, Uttar Pradesh (Pandey, 1982), tribes of Banda, Uttar Pradesh (Maheshwari and Singh, 1987), Varanasi, Uttar Pradesh (Verma et al., 2007),

Shahjahanpur, Uttar Pradesh (Sharma et al., 2010), Bijnor, Uttar Pradesh (Chaudhary and Kumar, 2011), Andhra Pradesh (Madhu and Yarra, 2011), Kota, Rajasthan (Dadhich et al., 2010), Jaipur, Rajasthan (Pareekh and Trivedi, 2011), Himalayas region (Kumar et al., 2011), Jammu and Kashmir (Mustaq et al., 2011), and also giving further strengthen to the present findings.

A biocultural adaptation was noticed in urban population by Pieroni and Vanderbroek (2007), while they studied past and present contexts between people and plants interaction, and also analyzed trans-national movements in urban living health care. Later on, Tiwari and Pandey (2010) has documented plant species that were used as a traditional cure by rural and urban population of Kanpur, which shows complete corroboration with the present findings. Recently, Aggarwal et al., (2012) identified 76 weed plants belonging to 32 families from different part of Uttar Pradesh, which showing medicinal value for health care. However, Patel (2012) listed 157 medicinal plants placed in 58 families from Bilaspur, Chhattisgarh and also provided their medicinal values for human welfare. Both the findings are support present result to a great extent.

The study finally concluded that despite dense urbanization, medicinal plants still play a key role in human health care. Herbal remedies have become popular in the treatment of minor ailments. Plants commonly used as traditional medicines in rural areas could still be found in the campus of Panki Thermal Power Station, Kanpur, Uttar Pradesh, India. The traditional medicinal practices using native medicinal plants is alive well due to belief in its effectiveness, little side effects, main advantage of being 100% organic and also its cost effectiveness although almost all of them are aware of modern allopathic medicines. It is the knowledge, practice and experiences that have passed on through generations. Therefore, protection and conservation of these important plant species for sustainable use for the future is an immediate need of today.

4. ACKNOWLEDGMENTS:

Author is thankful to the authorities of Panki Thermal Power Station, Panki, Kanpur for allowing to visit, conduct and collect data. Thanks are also due to local inhabitants of the campus for their cooperation in documentation of medicinal plants of the area.

5. REFERENCES:

Aggarwal S, Gupta V and Narayan R. 2012. Ecological study of wild medicinal plants in a dry tropical peri-urban region of Uttar Pradesh in India. *Inter J Med Arom Pl*, 2: 246-253.

Mushtaq A, Upadhy RS, Dar MA and Singh HB. 2011. Medicinal plants used by nomadic tribals of Rajouri Pir Panjal Foothills of north-west Himalayas in Jammu and Kashmir, India. *Med Pl*, 3: 53-58.

Sardar AA and Khan Z. 2009. Ethno medicinal studies on plant resources of Tehsil Shakargarh district Narowal, Pakistan. *Pak J Bot*, 41: 11-18.

Arora RK. 1997. Ethno botany and its role in conservation and use of plants. *Gangetic resources in India*. *Ethnobot*, 9: 6-15.

Augustino S and Gillah PR. 2005. Medicinal Plants in urban districts of Tanzania: Plants, gender roles and sustainable use. *Inter Fores Rev*, 7: 44-58.

Hailemariam BT, Woodmates SD and Mariam ZAW. 2009. An ethno botanical study of medicinal plants used by local People in lowlands of Konta special Woreda, southern nations, nationalities and people's regional State of Ethiopia. *J Ethnobi Ethnomed*, 24: 5-26.

Biswas K. 1956. Medicinal plants of Darjeeling and Sikkim Himalayas. *Indian Botanic Garden*, Calcutta, 8: 1-448.

Broadbent G. 2005. Biodiversity management in urban environment. Institute of Environmental Studies. The University of New South Wales, Australia.

Chaudhary S and Kumar R. 2011. Some important medicinal trees of district Bijnor. *Rec Res Sci Tech*, 3: 96-100.

Chopra RN and Chopra IC. 1956. A Review of work on Indian medicinal plants. ICMR, New Delhi, pp: 34-35.

Dadhich LK, Sharma N and Dadhich I. 2010. Medicinal plants in an urban Environment: Study of some important medicinal plants in urban area of Kota, Rajasthan. *Inter Res J*, 1: 85-86.

Dangol DR (2008). Traditional uses of plants of common land and habitats in western Chitwan, Nepal. *J Inst Agric Anim Sci*, 29: 71-78.

Dastur JF. 1962. Medicinal Plants of India and Pakistan. D.B. Taraporewala Sons & Co. Pvt. Ltd. Bombay.

Duthie JF. 1960. Flora of the upper gangetic plain and of the adjacent Siwalik and Sub-Himalayan tracts. *Botanical Survey of India*, Calcutta.

Hooker JD. 1973. Flora of British India (Eds: Singh B and Singh MP). Periodical Experts, New Delhi, pp: 1-18.

Jain SK. 1991. Dictionary of folk medicine and ethnobotany. Deep Publ, New Delhi, pp: 341.

Kirtikar KR and Basu BD. 1933. Indian medicinal plants. 1975 M/S *Chronica Botanica*. New Delhi.

Kumar M, Bussmann RW, Joshi M and Kumar P. 2011. Ethnomedicinal uses of plants close to rural habitation in Garhwal Himalayas, India. *J Med Pl Res*, 5: 2252-2260.

Lin KW. 2005. Ethno botanical study of medicinal plants used by the Jah Hut peoples in Malaysia. *Indian J Med Sci*, 59: 156-161.

Madhu V and Yarra R. 2011. Investigations on ethno medicinal plants used to cure skin diseases in Adilabad District, Andhra Pradesh, India. *Inter J Pharm Lif Sci*, 2: 742-745.

Maheshwari JK and Singh JP. 1987. Traditional phytotherapy amongst Kol tribe of Banda District, Uttar Pradesh. *J Econ Taxon Bot*, 9: 165.

Mehrotra S and Mehrotra BN. 2005. Role of traditional and folklore herb in development of new Drugs. *Ethnobot*, 17: 104-111.

Nadkarni KM. 1908. Indian Plants and Drugs. Nortan & Co. Madras.

Pandey IB. 1982. Phytochemical and antifungal studies of medicinal angiosperms of Kanpur. Ph.D. thesis. Kanpur University, Kanpur.

Pareekh A and Trivedi PC. 2011. Ethno botanical studies on medicinal plants of Kaladera region of Jaipur district. *Indian J Fundam Appl Lif Sci*, 1: 59-63.

Patel DK. 2012. Medicinal Plants in G.G.V. Campus, Bilaspur, Chhattisgarh in Central India. *Inter J Med Arom Pl*, 2: 293-300.

Pieroni A and Vanderbroek I. 2007. Travelling cultures and plants: The ethnobiology and ethno pharmacy of migrants. Burghahn Books, Oxford Publication, Landon.

Sharma J, Painuli RM and Gaur RD. 2010. Plants used by the rural communities of District Shahjahanpur, Uttar Pradesh. *Indian J Trad Knowl*, 9: 798-803.

Shastri K and Chaturvedi GN. 1996. Charak Dradhbala. In: The Charak Samhita (Eds: Upadhyay SR, Pandey GS, Gupta B and Mishra B). Chukhdumba Bharti Academy, Varanasi.

Tiwari S and Pandey IB. 2010. Inclination towards traditional herbal remedies in Kanpur division in northern Indian Gangetic Plains. *J Med Arom Pl Sci*, 3: 179.

Verma KA, Kumar M and Bussmann RW. 2007. Medicinal plants in urban environment: The medicinal flora of Banaras Hindu University, Varanasi, Uttar Pradesh. *J Ethnobiol Ethnomed*, 3: 3-35.

Yadav U, Poudel RC, Assetin H and Boon E. 2011. Biodiversity and ethnobotany inside the projected impact area of upper seti hydropow project, Western Nepal. *Environ Dev Sustain*, 13: 463-492.

Contents available at www.iamt.net.in

World Journal of Applied Sciences and Research
(ISSN 2249-4197)

2013, Volume 3, Issue 1, Pages 57-59

Efficacy of chilli mottle virus disease on root constraints of *Capsicum annuum* L. at Agra, India

HARSH DEEP YADAV, POONAM YADAV, LOKENDRA YADAV and PRABHAT KUMAR YADAV

Department of Botany, Agra College, Agra, Uttar Pradesh, India

Correspondence: yadav.harshdeep@gmail.com

Article Information	Abstract
<p>Article history: Received: 23.09.2012 Revised: 25.10.2012 Accepted: 15.11.2012</p>	<p>Chilli (<i>Capsicum annuum</i>) is a most important spice of India, which suffers with certain viral diseases, among them chilli mottle virus are most common and cause severe damage by the process of root inhibition, and also prevent the development of new branches. Three year study indicates that root elongation and root initiation in diseased plant retarded highest up to 14.15, 15.85 and 15.00 cm in elongation and 11, 11 and 10 in numbers of root initiation during the month of October during year 2005, 2006 and 2007, respectively. Although, no significant difference in root elongation and root initiation was recorded at germination stage of <i>Capsicum annuum</i>, but the difference were noticed with advancement in the age of plant and maximum variation was documented at maturity of crop.</p>
<p>Keywords: <i>Capsicum annuum</i>, ChiMV, Root elongation, Root initiation</p>	

1. INTRODUCTION:

Capsicum annuum L. is the most common and extensively cultivated domesticated species of chilli. Although the species name *annuum* is not represent it as annual plant, though it may also survive for several seasons. It is an important commercial crop grown round the year mainly by small farmers in both rain fed and irrigated area (Hidayat et al., 2012). The crop is always threatened with the infection of different viruses including *Tobacco Etch Virus*, TEV (Shepherd and Purcifull, 1971); Pepper Veinal Mottle Virus, PVMV (Brunt and Kenten, 1971); Pepper Mottle Virus, PMV (Zitter, 1972 and Purufull et. al., 1975) and Chilli Veinal Mottle Virus, ChiVMV (Ong et. al. 1980).

The mottle disease caused by ChiVMV infection was first time reported by Burnett in 1947 from Malaysia (Hidayat et al., 2012), but now a day's, it is well know and widely spread throughout the world specially in Asia including India, Taiwan, Thailand, Indonesia, China, Bangladesh, India, Nepal and Sri Lanka (Hidayat et al., 2012). Viruses usually affect growth of infected plants and also cause up to 30% yield losses to the crops during heavy infection. Although, ChiMV has inhibiting the emergence of new roots and also cause adverse effect on the growth of root (Broadbent and Cooper 1964). Therefore, present study has been made to investigate the effect of chilli mottle virus disease on root constraints of *C. annuum*.

2. MATERIALS AND METHODS:

To accomplish objective, chilli cultivated in the farmer's field at different location of Agra, was review and some pots were also maintained in the Agra College, Agra for the study of infection of virus disease. The infected plants were collected from the field and brought to the laboratory for confirmation of chilli mottle virus disease. After confirmation, the growth of *C. annuum* root were observed on the basis of fifteen days intervals in capsicum fields at Agra and also in the pots kept in green house conditions prevent viral infection. The observations were recorded soon after the showing to maturity of the crop. The time of root infection and length of root and their branches were measured by using scale. Above experiment followed for three consecutive years i.e., 2005, 2006 and 2007.

3. RESULTS AND DISCUSSION:

The data (Table 1) on root initiation and root elongation of healthy and diseased plants were recorded on the basis of fifteen days interval from the month of July to October. The findings revealed no significant difference between healthy and diseased *Capsicum* plants at the time of seed germinations. After few days, the root elongation in the healthy plants was established with more numbers and long branches than diseased ones. The less number of branches with reduced length of root

was observed in diseased plants. The growth reduction in the roots at different developmental stages was influenced with the intensity of the

infection of Chilli mottle virus (Broadbant and Cooper, 1964; Brunt et al., 1996; Davis et al., 2002; Hidayat et al., 2012).

Table 1. Effect of chilli mottle virus on root constraints of *Capsicum annuum* at Agra

Observations	Plants	Year 2005		Year 2006		Year 2007	
		Root Initiation	Root Elongations	Root Initiation	Root Elongations	Root Initiation	Root Elongations
15 th July	H	6.00±0.173	1.75±0.058	7.00±0.462	1.80±0.116	6.00±0.231	1.80±0.058
	D	4.00±0.404	1.75±0.058	5.00±0.289	1.80±0.058	5.00±0.404	1.80±0.116
30 th July	H	9.00±0.462	3.55±0.318	11.00±0.866	3.20±0.173	10.00±0.577	3.35±0.202
	D	6.00±0.231	2.50±0.116	8.00±0.520	2.50±0.145	7.00±0.462	2.50±0.231
15 th Aug.	H	14.00±1.039	6.10±0.289	15.00±1.155	6.20±0.231	13.00±0.577	5.90±0.404
	D	9.00±0.577	4.25±0.144	11.00±0.577	4.35±0.202	8.00±0.404	4.25±0.144
30 th Aug.	H	19.00±1.155	9.00±0.577	20.00±1.155	8.50±0.404	18.00±0.867	8.00±0.462
	D	12.00±0.577	6.30±0.404	13.00±0.577	5.90±0.346	11.00±0.577	5.75±0.433
15 th Sept.	H	26.00±1.155	15.00±0.866	27.00±1.155	14.50±0.866	25.00±1.155	13.00±0.866
	D	15.00±0.577	7.00±0.462	17.00±0.866	6.50±0.289	16.00±0.577	6.25±0.289
30 th Sept.	H	30.00±1.155	18.75±1.011	31.00±1.732	19.00±0.866	29.00±1.155	19.50±0.866
	D	19.00±0.866	8.15±0.433	20.00±0.866	7.75±0.433	18.00±0.866	8.50±0.577
15 th Oct.	H	32.00±1.443	29.15±1.155	33.00±1.732	26.50±1.443	31.00±1.732	24.00±1.732
	D	21.00±1.155	15.00±0.577	22.00±1.155	10.65±1.155	21.00±1.730	9.00±0.520

H = Observations with respect to healthy plant

D = Observations with respect to diseased plant

The results indicated that highest root elongation of healthy plants of *C. annuum* were recorded as 29.15±1.155, 26.50±1.443 and 24.00±1.732 cm, whereas in diseased plants it was noticed as 15.00±0.577, 10.65±1.155 and 9.00±0.520 cm. in years 2005, 2006 and 2007, respectively (Table 1). Similarly, in diseased plants, the maximum root initiation was observed as 21.00±1.155, 22.00±1.155 and 21.00±1.730 compared to healthy of 32, 33 and 31 during the month of October in year 2005, 2006 and 2007, respectively (Table 1). The finding are well supported with the work of Brunt et al. (1996), Shah et al. (2001), Davis et al. (2002), Taufik et al. (2005) and Hidayat et al. (2012).

4. ACKNOWLEDGEMENTS:

The authors are highly thankful to the Principal, Agra College Agra and the Head, Department of Botany for providing necessary facilities during the present research work.

5. REFERENCES:

Broadbent L and Cooper AJ. 1964. The influence of tomato mosaic virus on root growth and the annuals pattern of fruit production. Ann Appl Biol, 54: 23-30.

Brunt AA and Kenten RH. 1971. Pepper veinal mottle virus, a new member of the potato Y group from pepers (*Capsicum annuum* L. and *C. frutescens* L.) in Ghana. Ann Appl Biol, 69: 215-43.

Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L and Zurcher EJ. 1996. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996. URL <http://biology.anu.edu.au/Groups/MES/vide/>

Davis RI, Thomas JE, McMichael LA, Dietzgen RG, Callaghan B, James AP, Gunua TG and Rahamma S. 2002. Plant virus surveys on the island of New Guinea and adjacent regions of northern Australia. Austra Pl Path, 31: 385-390.

Hidayat HS, Opriana E, Manzila I and Sujiprihati S. 2012. Occurrence of *Chili Veinal Mottle Virus* (ChiVMV) in Indonesia and response of chili

germplasms to ChiVMV infection. J ISSAAS, 18: 55-61.

Ong CA, Vorrhese G and Ting WP. 1986. The effect of chilli veinal mottle virus on yield of chilli (*Capsicum annuum* L.), MARDI Res Bull, 8: 74-8.

Pureifull DE, Zitter TA and Hiebert E. 1975. Morphology, host range, and serological relationships of pepper mottle virus. *Phytopathology*, 65: 559-62.

Shah H, Khalid S and Ahmad I. 2001. Prevalence and distribution of four pepper viruses in Sindh, Punjab and North West Frontier Province. On Line J Biol Sci, 1: 214-217.

Shepherd RJ and Purcifull DE. 1971. Tobacco etch virus CMI/AAB, In: Descriptions of plant viruses, pp: 55.

Taufik M, Astuti AP, and HidayatSH. 2005. Survey of *Cucumber mosaic virus* and *Chilli veinal mottle virus* on chilli pepper and screening of resistance of chillipepper genotypes (in Bahasa Indonesia, English abstract). J Agricult, 16: 146-152.

Zitter TA. 1972. Pepper virus strain identification in southern florida. *Phytopathology*, 62: 800.

Contents available at www.iamt.net.in

World Journal of Applied Sciences and Research
(ISSN 2249-4197)

2013, Volume 3, Issue 1, Pages 60-62

Impact assessment of metacercarians on the air breathing fishes of northern Bihar, India

ARASTU UPADHYAY and M.M.R NOMANI

Department of Zoology, M.L.S.M. College, Darbhanga, Bihar, India

Correspondence: doctorarastu@gmail.com

Article Information	Abstract
<p>Article history: Received: 23.10.2012 Revised: 12.12.2012 Accepted: 01.01.2013</p>	<p>Maetacercarians are larvae of helminthes and commonly found in the fishes cultivated in oxygen deficient water bodies. These fishes are cultivated via systematic culture and found to be infected with various parasitic diseases. In the present investigations, it was observed that metacercariae and other helminthes stages were associated with various somatic and visceral organs and also causes extensive damage to the fishes. However, symptoms observed were necrosis, fibrosis, and other mechanical damage. The deleterious effects could be assessed from accurate examination of the invaded regions and a clearer picture of pathogenesis of helminthes infection in fishes expected to emerged. The present paper is more fruitful for the producer of air breathing fishes throughout the world.</p>
<p>Keywords: Air breathing fish, fibrosis, histopathology, necrosis, metacercariae</p>	

1. INTRODUCTION:

The famous scientist Malthus said that “food increase in arithmetic ratio, whereas population increase in geometric ratio”. This indicates that the food problem will increase in the coming decades. Now a day's, food security is a big problem throughout the word. In addition, fish is considered as proteinous and nutritious food and its increase production can solve food requirement up to a limit (Arastu and Nomani, 2012). Though, many countries are working to search out the importance of fishes for men till date (Verma, 2012). In the water bodies of India, especially at Darbhanga, Bihar, air breathing fishes usually thrive and constitute important fishery resources (Arastu and Nomani, 2012). These fishes may be cultivated in oxygen deficient water by systematic and scientific culture and are subjected to various parasitic diseases. These diseases not only deplete the fish race but also render these diseases to human beings.

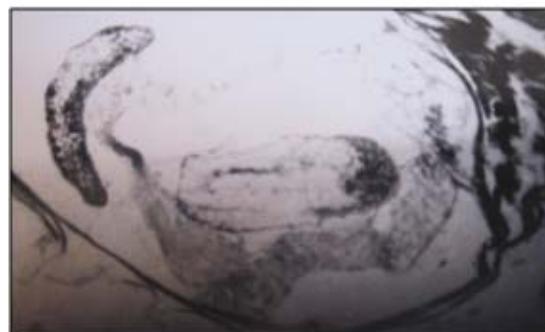
In addition, the great stress has been placed recently on the development of air breathing fishes to make a scientific assessment on the role of helminthes as potential pathogen in the north Bihar, India. Therefore, to get a clear image of infections and the effect of the diseases, observations of the infected tissues have been made in the present study.

2. MATERIALS AND METHODS:

Healthy and parasitized air breathing fishes *Clarias batrachus*, *Channa punctatus* and *Heteropneusts fossilis* were collected from derelict swamps and ponds of district Darbhanga, Bihar. Routine examinations of skin, muscles, gills, viscera and eyes were made through naked eyes, followed by detailed examination of organ concerned in 0.6% saline solution under dissecting microscope.

To segregate the encysted metacercariae associated with muscles, skin, liver, artificial digest were applied by using 0.5% pepsin and 0.5% HCl in 0.65% saline solution. The affected parts were preserved in 10% neutral formalin, Bouin's fluid and Zerker's fixatives for 24-28 hours prior to processing. Paraffin sections were cut (sized 5-7 μ) and stained with haematoxyline and eosin, and subjected to microscopic observations.

3. RESULTS AND DISCUSSION:


The present observations reported the effect of helminthes infections on some vital organs in air breathing fishes including *Clarias batrachus*, *Channa punctatus* and *Heteropneusts fossilis*. The microscopic examination of skin revealed hemorrhage, hyperemia, patches and necrosis in the superficial areas of body musculature and skin. The tissue elements were merely pushed aside to make room for the strigeoid metacercariae (Fig. 1 and 2). The present findings showed corroboration with experiment of Hoffman (1975) and Bell and Margolis

(1976), they reported that many cercariae penetrate the skin of fish and produce cyst wall, whereas, hemorrhage were also recorded in superficial areas

of the body musculature. Later on, Pandey (1971) and Dubey (1980) recorded muscle necrosis in the host tissue around the encysted worm.

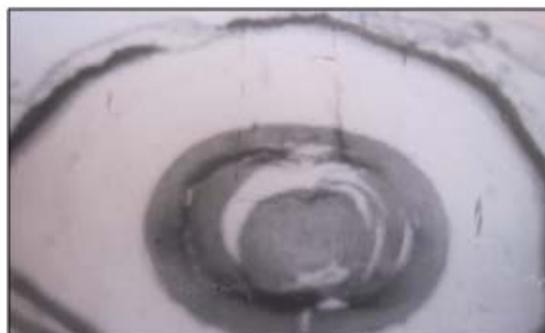

Fig. 1. Strigeoid metacercarial cysts scated deep in muscles of *Clarias batrachus*

Fig. 2. Photomicrographs of portions of sections of lesioned patches of skin and

Fig. 3. Photomicrographs of portions of parasitized liver of *H. fossilis*

Fig. 4. Section of photomicrographs of the parasitized eye of *H. fossilis*

In infected eyes of fishes, lesion were numerous and varied in their etiology due to variation in the number of metacercarial (Sato et al., 1975; Pandey, 1970; Dubey et al., 1981). Hoffman (1975) reported that the lenses become opaque causing blindness of the diseased fish. Similarly, Cercariae of *Diplostomum* when localize in the eye lens and grow in size, the lens herniation were recorded in the host (Datta Munshi, 1993). However, no such herniation of lens was observed in the present investigations. But observations revealed whitish and opaque eye of infected fishes, photoreceptor cells were disoriented, and parasites were located in the peripheral retina and some retina was displaced from normal position (Fig. 4). Similar observations in the retina of salmon was recorded by Davis et al., (1973) and given further strengthen to present result.

Infected liver contains white dots throughout its surface with pale in colour compare to the bright brown colour of healthy liver of fish. The sinusoids and blood vessels were engorged and hepatic cords lost. The hepatocytes had undergone degeneration

(Fig. 3). The liver of teleost does not show diversity of pathology, but susceptible to a number of toxic and metabolic disturbances. The findings are well supported with the work of Dubey (1980), Dubey et al. (1990), Hassan (2005) and Verma (2012), they reported various changes in the liver of the fishes infected with various helminthes parasites.

In the present investigation the strigeoids present in the liver of air breathing fish were not of the cyst forming type, rather they were all actively moving and feeding on the liver tissues. Thus, necrosis, fibrosis and other mechanical damages of the tissues were of much pronounced than those observed by Hoffman (1975) and Sinha et al., (1988), while studied the yellow grub disease of fresh water fish, *Channa punctatus* and also by Chakravaty and Tandon (1989) in *Clarias batrachus*.

The present study provide general information on the impact of metacercariae and other helminthe parasites and also fruitful for the producer of air breathing fishes.

4. REFERENCES:

Arastu and Nomani MMR. 2012. Histopathological observations on helminth infection of some air breathing fishes of India. *World J Appl Sci Res*, 2: 55-57.

Bell GR and Margolis L. 1976. The Fish Health Programme and the occurrence of fish diseases in the region of Canada. *Fish Path*, 10: 115-122.

Chakraverty R and Tandon. 1989. Caryophylliasis in the cat fish *Clarias batrachus* L. some histopathological observation. *Proc Indian Academ Sci*, 98: 127-132.

Datta M. 1993. Structure and function of the air-breathing organs of *H. fossilis*. In: advance in fish research, Narendra Publication House, New Delhi, 1: 99-138.

Davis RB, Burkhard WL and Hibler CP. 1973. Diplostomiasis in North Park. *Colorado J Wildlife*, 9: 363-367.

Dubey NK, Usha and Jha AC. 1990. The effect of *Diplostomulum* infection on certain blood biochemical constituents of *Heteropneustes fossilis* (BI). *Biojournal*, 2: 343-346.

Dubey NK. 1980. Studies on some pathological aspects of certain freshwater fish, PhD Thesis, LNM Univ, Darbhanga.

Dubey NK, Pandey and Dubey U. 1981. The influence of metacercaria of *Diplostomum* (Trematode) on the respiration of *Hetesopneustes fossilis* (BI) *Ultar pradeoh. J Zool*, 1: 98-102.

Hassan N. 2005. Study on some aspects of parasitic diseases of some fresh water fishes. Ph.D thesis, LNM Univ, Darbhanga.

Hoffman GI. 1975. Lesions due to internal helminthes of fresh water fishes, In: *The pathology of fishes*, (Eds: Ribelin WE and Migaki G). The University of Wisconsin Press, pp: 151-188.

Pandey KC. 1970. Studies on metacercaria of freshwater fishes of India on the two new species of *Diplostomulum brandes*, 1982. *Proc Indian Acad Sci*, XXII: 162-170.

Pandey KC. 1971. Studies on metacercaria of freshwater fishes of India on the two new species of *Neascus hughes*, 1927. *Proc Indian Acad Sci*, XXIII: 78-83.

Sato T, Hoshina T and Horiuchi M. 1975. On worm cataract of rainbow trout in Japan. *Bull Japanese Soc Sci Fisher*, 42: 249.

Sinha AK, Sinha CK and Nikhil R. 1988. Studies on yellow grub disease of freshwater fish *Channa punctatus* (Bloch). *Curr Sci*, 57: 218-219.

Verma N. 2012. Studies on histopathological changes in edible fishes of river Yamuna by helminth parasite in Agra. Ph.D. Thesis, Dr. BRA Univ, Agra, pp: 1-200.

Contents available at www.iamt.net.in

World Journal of Applied Sciences and Research
(ISSN 2249-4197)

2013, Volume 3, Issue 1, Pages 63-64

Short Communication

Haematological observations of fresh water fish *Catla catla* (Ham.) against toxic tannery chemicals

RAKESH KUMAR DAKSH, SUMAN PRAKASH and AJAY CAPOOR

Department of Zoology, Agra College, Agra, Uttar Pradesh, India

Correspondence: dr123daksh@gmail.com

Article Information	Abstract
Article history: Received: 07.07.2012 Revised: 22.10.2012 Accepted: 15.11.2012	The toxic effect of two tannery chemicals <i>i.e.</i> , Basic Chromium Sulphate (BCS) and Nigrosine Black (NB) on the fresh water fish, <i>Catla catla</i> were observed at different time intervals (24, 48, 96 hrs and 1 week) with three different concentrations <i>viz.</i> , 3, 4 and 5 mg/lit for BCS and 7, 8 and 9 mg/lit for NB. The findings revealed that the clotting time of blood varies significantly from 1.99 ± 1.05 to 3.53 ± 1.10 with BCS and also from 1.99 ± 1.05 to 3.10 ± 1.20 with respect to NB. It was interestingly noticed that the toxicity was increased with increase in the concentration and the time of exposure. Exposure of chemicals disrupts the blood profile and BCS is more toxic than NB.
Keywords: BCS, <i>Catla catla</i> , haematology, NB, Toxicity	

1. INTRODUCTION:

Fishes were used even at prehistoric ages and they were supposed to be beneficial to long life and intelligence (Daksh and Kapoor, 2011). The medicinal value of fish contains fatty acids, essential minerals, salt like calcium, iron, phosphorus, sulphur, magnesium, iodine; vitamins such as vitamin A, B and D. They are low-fat and low-calorie and ideal food for slimming. The researches over the past few decades have shown that the nutrients and minerals in fish, particularly the "Omega-3" polyunsaturated fatty acids, which are heart-friendly and also helps to improve the brain development and reproduction (Verma, 2012).

The natural water is polluted with different pollutants including sewage, industrial waste, tannery effluents etc. Their primary importance is possible hazards to public health and safety of lesser consequence, but still very real destruction of economic value of clean natural waters. Tannery effluents discharged from industries and also from domestic waste are ultimately dumped into sewers or river and known as "storm sewage" (Ingram et al., 1989). The domestic sewage consist of discharges of spent water from wash basins, bathroom and from other sources which is a complex mixture of mineral and organic matter. The treatment of polluted water is necessary prior to human use for various practices. The aim of present study is to check out the sublethal

effect of tannery chemicals on haematological parameters of fresh water fish *Catla catla*.

2. MATERIALS AND METHODS:

The fishes were collected from the Government fish farm Laramada village, river Yamuna at Agra and also purchased from local market of district Agra, acclimated in the laboratory. Furthermore, they were exposed in sublethal concentrations of Basic Chromium Sulphate (BCS) @ 3, 4, 5 mg/lit and Nigrosine Black (NB) @ 7, 8, 9 mg/lit for the period of 24, 48, 96 hrs and 1 week. On the other hand, a control was run simultaneously, for which no chemical injected in the body of fishes. The culture of infected and uninfected fishes was maintained in the aquarium (APHA, 1992).

The clotting time was observed through Duke's method as described by Wintrobe et al. (1968). The duration of time required for the blood to clot at normal room temperature ($37 \pm 1^\circ\text{C}$) were recognized as clotting time. A drop of freshly drawn blood was taken from the fishes and placed on a clean and dry slide and also calculate the clotting time. Repeatedly, a clean needle was slowly passed through the drop of blood at regular interval till a fibrin thread could be pulled out by the point of the needle, this was an indication that clotting has started and time was noted by stopping the watch. The clotting time was recorded in unit of minutes.

3. RESULTS AND DISCUSSION:

When the fishes, *Catla catla* exposed for tannery chemicals (BCS @ 3, 4, 5 mg/l and for NB @ 7, 8, 9 ml/l), the clotting time was varied significantly from 2.33 ± 0.89 to 3.53 ± 1.10 min with respect to exposure period (varied from 24 to 1 week). However, control showed a variation of 1.99 ± 1.05 to

2.34 ± 1.45 (Table 1). These finding are well supported with the work of Agarwal (1994), who reported increased blood clotting time in *Heteropneustes fossilis* (Bloch) against the exposure of zinc. However, Nath and Jaipuryar (1996) recorded no significant change in the clotting time with the toxicity of lindane in *Heteropneustes fossilis* (Bloch).

Table 1. Clotting time in *Catla catla* after exposure of BCS and NB toxicants

S.No.	Conc.	Control (Mean \pm SD)	24 hrs (Mean \pm SD)	48 hrs (Mean \pm SD)	96 hrs (Mean \pm SD)	1 week (Mean \pm SD)
A. Basic Chromium Sulphate (BSC)						
1.	3 mg/l	1.99 ± 1.05	$3.01 \pm 1.99^{**}$	$3.23 \pm 1.99^{**}$	$3.33 \pm 1.55^{***}$	$3.39 \pm 1.12^{**}$
2.	4 mg/l	2.34 ± 1.45	$3.12 \pm 2.01^{**}$	$3.22 \pm 1.78^{**}$	$3.45 \pm 1.01^{****}$	$3.51 \pm 1.39^{**}$
3.	5 mg/l	2.34 ± 1.11	$3.16 \pm 1.76^{**}$	$3.29 \pm 1.10^{***}$	$3.47 \pm 0.99^{****}$	$3.53 \pm 1.10^{***}$
B. Nigrosine Black (NB)						
1.	7 mg/l	1.99 ± 1.05	$2.33 \pm 0.89^{*}$	$2.46 \pm 0.98^{**}$	$2.94 \pm 0.49^{***}$	$2.94 \pm 0.72^{***}$
2.	8 mg/l	2.34 ± 1.45	$2.45 \pm 1.10^{*}$	$2.49 \pm 0.98^{**}$	$2.89 \pm 1.02^{****}$	$2.92 \pm 0.45^{***}$
3.	9 mg/l	2.34 ± 1.11	$2.99 \pm 0.88^{**}$	$3.00 \pm 0.68^{**}$	$3.09 \pm 1.10^{****}$	$3.10 \pm 1.20^{****}$

* Non-significant ($P > 0.05$)

** Significant ($P < 0.05$)

*** Highly significant ($P < 0.01$)

**** Very highly significant ($P < 0.001$)

It was interestingly noticed that the toxicity was increased with concentrations and exposure time. The supported findings are John (2006), investigated increased clotting time in *Mystus vittatus* against the exposure of metasystox and sevin. The observations revealed that exposure of chemicals disrupt the blood profile and BCS are more toxic than NB. Recently, Seikh et al. (2009) made observations on toxicity of leather dyes on blood parameters of *Cirrhinus mrigala* and showed complete corroboration with present outcome.

4. ACKNOWLEDGEMENTS:

The author express their sincere thanks to Dr. D.C. Sharma, Head, Department of Zoology, Govt. P.G. College, Noida for his help, and also thankful to Dr. Rajeev Sharma, Young Scientist, Department of Zoology, R.B.S. College, Agra for his support.

5. REFERENCES:

Agrawal U. 1994. Effect of sub-lethal concentration of zinc on some haematological parameters of fresh water Indian cat fish, *Heteropneustes fossilis* (Bloch.). *Adv Zool*, 15: 86-89.

APHA. 1992. Standard methods for the examination of water and waste water, 18th ed., American Water Works Association, Washington, D.C..

Daksh RK and Kapoor A. 2011. Effect of chromium sulphate on hematology parameter of a fresh water fish, *Catla catla*. *Bionotes*, 13: 120.

Ingram RG, Bourget E and Fevire JL. 1989. Effect of ocean variability on the abundance of dungeness crab. *Fish Aquat Sci*, 50: 1002-4016.

John PJ. 2006. Alteration of certain blood parameters of fresh water teleost; *Mystus vittatus* (Bloch.) after chronic exposure to metasystox and sevin. *Fish Physio Biochem*, 10: 695-706.

Nath R and Jaipuryar ARK. 1996. Acute toxicity of lindane on the haematological parameters of *Heteropneustes fossilis* (Bloch.). *J Fresh Water Biol*, 8: 105-107.

Sheikh A, Rana KS, Gulzar G and Daksh RK. 2009. Water pollution with leather dyes and their effect on fish fauna. *J Exp Zool India*, 12: 447-449.

Wintrobe MM, Bishap CR, Athens JW, Boggs DR, Warner HR and Cartwright GE. 1968. Developed method of the blood component determination. *J Clin Invest*, 47: 249-260.

Verma N. 2012. Studies on histopathological changes in edible fishes of river Yamuna by helminth parasite in Agra. PhD Thesis, Dr. BRA University, Agra, pp: 1-200.

Short Communication

Management and conservation of Blackbuck, *Antilope cervicapra* population at Sikandra in district AGRA, U.P., India

GEETA SALUJA and AJAY CAPOOR

Department of Zoology, Agra College, Agra, U.P., India

Correspondence: geetasaluja@gmail.com

Article Information	Abstract
Article history: Received: 10.09.2012 Revised: 15.11.2012 Accepted: 01.12.2012	The <i>Antilope</i> 's dwindling numbers in protected as well as wild populations resulted in its inclusion in Schedule 1 of Wildlife (Protection) Act, 1972. The population residing at Sikandra, Agra (U.P.) has fluctuated and reduced over the decades. The associated reasons were identified and a conservation and management plan was drawn which is essential for sustainability of healthy population of Blackbuck.
Keywords: <i>Antilope cervicapra</i> , wildlife conservation, management	

1. INTRODUCTION:

The *Antilope* was once found in large number all over the Indian subcontinent. Nowadays, their number decimated as they were largely hunted for their meat and sport. Although, Ranjitsinh (1989) was estimated their population between 22,000 and 24,000, which was reduced largely as compared to 80,000 estimated in the sixties. Even now they are more commonly found outside protected areas (Brander, 1923; Rahmani, 1991). The diminishing numbers of this animal resulted in its placement in the Part 1, Schedule 1 of Wildlife (Protection) Act 1972.

A small population of blackbuck flourishes in the semi-wild habitat of Sikandra, tomb of Emperor Akbar at Agra. Blackbucks reside in the lawns and adjoining area of tomb and are also matter of anthropogenic pressure (Saluja et al., 2012). There were little works has done to maintain their stable healthy population in this monument (Rahmani, 1991). But after two decades, some measures need to be implemented strictly for a sustainable existence of this species. Therefore, present study provides information on conservation and management of blackbuck, *Antilope cervicapra* at Sikandra, Agra.

2. MATERIALS AND METHODS:

The field visits were made to record actual number of blackbuck and they were directly counted at an instance. For this purpose 7 X 50 'Nikon'

binoculars were used to trace the distant animals; particularly for fawns and juveniles, which were difficult to locate with naked eyes. The process was followed throughout the year, and suggestions in relation to the reason on decline in the numbers of this population could be drawn.

3. RESULTS AND DISCUSSION:

3.1. Management of feeding grounds: Blackbuck at Sikandra relied entirely on grasses, which are available in only 25 % of total field area. These grasses were inadequate in providing proper nutrition to a substantial population of blackbuck. However, deterioration in health of animals was clearly visible during summer. Therefore, the grasses should be thoroughly watered in order to provide constant supply of food to antelopes throughout the year. It is confirmed by Jhala (1997), who evaluated seasonal effects on nutritional ecology of blackbuck.

3.2. Provision of supplementary food: During summers, when the grasses dry up, a substantial population can be maintained well by providing supplementary food at fixed hours. This supplementary food could include those items which they are reported to feed upon in the wild and in those habitats where they rely on agricultural crops, for example gram (Ranjitsinh, 1989) and rice, mas dal, wheat and mustard (Lehmkuhl, 1980). This could help the animals in sustaining themselves when grasses are unable to support their dietary requirements.

3.3. Need for experts: During present study, wounded males were noted but no medical assistance was made available to them. Therefore, wildlife experts and veterinary doctors should also be appointed for surveying the health of animals at regular intervals.

3.4. Reducing anthropogenic pressures through wildlife guards: Sikandra is a tourist spot and rush of visitors is quite obvious at this place in Agra. We observed that sometimes people entered in the lawns and unnecessarily frightened this innocent animal. On occasion (picnic), a group of about 30 students chased the animals from the lawns to the forest.

Local interview of some workers of the monument established that animals also succumbed to the effect of shock. This was probably due to human disturbances, which made the animals awestruck. So, wildlife guard should be kept to strictly stop the visitors from getting into the lawns. These guards could also help in checking illegal hunting. *Antilope cervicapra* is very shy and avoid the presence of human beings. Therefore, only workers should be allowed to move quietly through the lawns.

3.5. Need of scientific studies: Studies should also be made on the population of antelopes at regular intervals which covers every aspect of their behaviour. A population census should also be carried out at regular intervals so that a record could be maintained regarding any fluctuation in the number of animals.

3.6. The authorities should make efforts in detecting the casualties: During present observation, it was noticed that few carcasses of antelopes are also

available at Sikandra, Agra. The authorities, who are taking care, should be scheduled to investigate the associated reasons for their mortality. It appeared that there was no caretaker of these animals because one carcass lay there for about fifteen days.

4. ACKNOWLEDGEMENTS:

The authors are highly thankful to the authorities of Sikandra tomb, Agra for permitting me regular visit to observe the animals and also grateful Mr. Prateek Pandya for helping to operate the computer.

5. REFERENCES:

Brander AD. 1923. Wild animals in central India, Edward Arnold Co. London, pp: 296.

Jhala YV. 1997. Seasonal effects on the nutritional ecology of blackbuck. *J Appl Ecol*, 34: 1348-1358.

Lehmkuhl JF. 1980. Some aspects of the life history of blackbuck in Nepal. *J Bombay Nat Hist Soc*, 77: 444-449.

Rahmani AR. 1991. Present distribution of the blackbuck (*Antilope cervicapra* Linn.) in India, with special emphasis on the lesser known populations. *J Bombay Nat Hist Soc*, 88: 35-46.

Ranjitsinh MK. 1989. The Indian Blackbuck, Natraj Publishers, Dehradun, India, pp: 155.

Saluja G, Kapoor A and Gupta DP. 2012. Studies on the feeding behaviour of Indian Blackbuck, *Antilope cervicapra* L. in semi-wild habitat of Sikandra at Agra, India. *World J Appl Sci Res*, 2: 32-35.

WORLD JOURNAL OF APPLIED SCIENCES AND RESEARCH

Instruction to Authors

The World Journal of Applied Sciences and Research is essentially devoted to the publication of original research papers on all aspects of Applied Science, including Life Sciences, Environmental Sciences, Engineering, Agricultural Sciences, Biotechnology, Microbiology, Applied Chemistry, Applied Physics and Applied Mathematics etc. All the papers, review articles and short communication submitted to the journal must be unpublished original work. The manuscripts should be in English and typed on one side of A4 sized paper in double lined spaced throughout with ample margin. Text required in any format on CD in MS Word with two hard copies or through e-mail as attached file(s) is preferred since it save time as well as retying of the manuscript.

Manuscript: The research papers submitted to *WJASR* should be full length paper, review articles and short communication depending up on the length of paper. The review article, full length paper and short communication should have following headings:

Title: The title to be bold and typed in 14 sized fonts, authors name should be capital and bold in 12 sized fonts, and affiliation should be in capital and small letters with 11 sized fonts. It followed by e-mail address of the corresponding author.

Abstract: The abstract should indicate the main findings of the manuscript and typed in single line space. It should be not more than 200 words.

Keywords: 5-7 key words related to the study should be given.

Introduction: This should be brief and related to the aim of the study. The review of literature should be pertinent to the theme of the manuscript. Extensive review and unnecessary detail of earlier work should be avoided.

Materials and Methods: It should include the procedure/ methodology of research work, citation of slandered work, and statistical formulas. All the measurements should be in metric units.

Results and Discussion: It should either combine or in separate heads. The result should be supported by either tables or figures. In the portion of discussion, authors should be justifying their findings with the most recent available literature.

Acknowledgements: To be given, if necessary.

References: In the text references should be cited as follows: for two authors (eg. Sharma and Kapoor, 2008) and for three and more (eg. Ahmad et al., 2007). All the references made in the text must be listed alphabetically by the authors, followed by year of publication, title of paper, name of the journal, volume and pages of the journal.

For example:

Daksh RK and Kapoor A. 2011. Toxic effects of tannery chemicals on the histopathology of fresh water teleost, *Catla catla* (Ham.). Res J Agri Sci, 2(2): 351-363.

Schaperclaus W. 1986. Fish disease. (Vol 2, Eds: Chari MSR and Kothekar), Oxonium Press Pvt Ltd, New Delhi, pp: 28-39.

Srivastava D and Singh P. 2011. Exploitation of weed plants as beneficial purpose. In: 1st World conference for man and nature, "Global climate change and biodiversity conservation" Inventories of Research, pp 114.

Tables and Figures: Each table and figure should be placed at separate sheet and also be numbered in numerals (Table 1, Table 2 or Fig. 1, and Fig. 2). The tables and figures should be descriptive without any references and black and white figures/ graphs will highly be appreciable.

Manuscript Submission: Duly completed manuscript should be send to Dr. Rajeev Sharma, Editor-in-Chief, World Journal of Applied Science and Research, 21-Suruchi Puram, Agra - 282 007, India or as attachment on e-mail: wjasr@rediffmail.com, dr_dineshsharma@hotmail.com

Membership Charges:

Category	Annual	Life (10 Years)
For International Journal of Music therapy (IJMT)	2000 (Indian) 100\$ (Foreign)	10000 (Indian) 500\$ (Foreign)
For World Journal of Applied Sciences & Research (WJASR)	2000 (Indian) 100\$ (Foreign)	10000 (Indian) 500\$ (Foreign)
For both IJMT and WJASR	3000 (Indian) 150\$ (Foreign)	15000 (Indian) 800\$ (Foreign)

